1,707,819 research outputs found

    Host-restricted Range of H5n1 Avian Influenza Viruses Associated with Characters of Polymerase Complex of Pb2 and Pb1-f2 Proteins

    Full text link
    Epidemiological studies on H5N1 avian influenza viruses indi-cated that the viruses do not transmit efficiently from human to human. Transmissibility of viruses among human population is very complex and polygenic. Studies on molecular determinants facilitating interspecies transmission of the viruses suggested that two polymerase complex proteins such as PB2 and PB1-F2 are important. PB2 is critical in determining the host specificity, whereas mutations in PB1-F2 increase the viral virulence. The study aimed to characterize the polymerase complex of PB2 and PB1-F2 proteins of H5N1 avian influenza viruses isolated from Indonesia. The DNA samples encoding the PB2 and PB1-F2 complex proteins of several H5N1 isolates were sequenced and analyzed. Pathogenicity of the viruses was studied in both avian and mammal models. The sequencing results showed that there was no mutation in both proteins of PB2 and PB1-F2 of the avian influenza virus isolates. The molecular character for host specificity was consistent with the animal experiment results. The H5N1 virus isolates were only infectious and pathogenic in chickens, but not in BALB/C mice as the mammal model. The study suggests that host range of H5N1 virus isolates of Indonesia is restricted to poultry and not transmisible to mammal model used in this study

    A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies

    Get PDF
    Olpidium brassicae is a ubiquitous obligate root-infecting fungal pathogen. It is an important vector of a wide range of plant viruses. Olpidium isolates that infected brassica plants did not infect lettuce plants and vice-versa. Host range tests, PCR amplification and sequencing of the internal transcribed spacer (ITS) and 5.8S regions of 25 Olpidium isolates from brassica, carrot, cucumber and lettuce originating from four continents revealed differences between isolates. Based on their ability to infect lettuce and brassicas and the differences between their ITS1, 5.8S and ITS2 regions they could be separated into a number of distinct groups. Comparisons with other published sequences revealed two distinct genetic groups of brassica-infecting isolates, two distinct groups of lettuce-infecting isolates, one of which contained a carrot-infecting isolate and a distinct group comprising a cucumber-infecting isolate and a melon-infecting isolate. The possibility of the isolates belonging to three distinct species is discussed

    Variation in physiological host range in three strains of two species of the entomopathogenic fungus Beauveria

    Get PDF
    Knowledge of the host range of a biocontrol agent (BCA) is fundamental. Host range determines the BCA's economic potential, as well as the possible risk for non-target organisms. Entomopathogenic fungal strains belonging to the genus Beauveria are widely used as BCA, but our knowledge of their physiological host range is only partial. The aim of this study was to improve our understanding of the physiological host range of three Beauveria strains belonging to two species, B. hoplocheli and B. bassiana. We performed laboratory mortality bioassays to assess their pathogenicity and virulence against nine insect pests, belonging to three orders: Lepidoptera, Coleoptera and Diptera. Mortality rate, mean survival time and mycosis rate were used to estimate virulence. Pathogenicity was assessed as the capacity to cause a disease and induce mortality. Virulence was assessed as the severity of the disease based on mortality rate, mean survival time and mycosis rate. The results of this study revealed significant differences in the physiological host range of the three Beauveria strains tested. The three strains were pathogenic to all Diptera and Lepidoptera species tested. In the case of the Coleoptera, only the B. hoplocheli strain was pathogenic to the white grub Hoplochelus marginalis and only the B. bassiana strains were pathogenic to Alphitobius diaperinus. The B. hoplocheli strain was less virulent on Lepidoptera and Diptera than the two B. bassiana strains. The latter both exhibited very similar virulence patterns. The fact that B. hoplocheli and B. bassiana strains have different host ranges means that they can be used as BCA to target different pests. Impacts on non-target insects across multiple orders cannot be ruled out in the absence of ecological host range studies

    Physical conditions and element abundances in SN and GRB host galaxies at different redshifts

    Full text link
    We compare the physical parameters and the relative abundances calculated throughout supernova (SN) and gamma-ray burst (GRB) host galaxies by the detailed modelling of the spectra. The results show that : 1) shock velocities are lower in long period GRB (LGRB) than in SN host galaxies. 2) O/H relative abundance in SN hosts are scattered within a range 8.0 <12+log(O/H)<8.85 but they are close to solar in LGRB hosts. N/H are lower than solar for both SN and LGRB. 3) The starburst temperatures within a few SN hosts reach Ts >10^5 K. Ts in LGRB hosts are 3-8 10^4 K. 4) Ha increases with the ionization parameter U. We suggest that SN-host symbiosis is stronger in terms of host galaxy activity than GRB-host in the range of energies related to the near UV - optical - near IR spectra.Comment: 20 pages, 9 figures. Accepted for publication in the MNRA

    Which morphological characteristics are most influenced by the host matrix in downy mildews? : A case study in Pseudoperonospora cubensis

    Get PDF
    Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation

    The nuclear to host galaxy relation of high redshift quasars

    Get PDF
    We present near-infrared imaging with ESO VLT+ISAAC of the host galaxies of low luminosity quasars in the redshift range 1 < z < 2, aimed at investigating the relationship between the nuclear and host galaxy luminosities at high redshift. This work complements our previous study to trace the cosmological evolution of the host galaxies of high luminosity quasars (Falomo et al. 2004). The new sample includes 15 low luminosity quasars, nine radio-loud (RLQ) and six radio-quiet (RQQ). They have similar distribution of redshift and optical luminosity, and together with the high luminosity quasars they cover a large range (~4 mag) of the quasar luminosity function. The host galaxies of both types of quasars are in the range of massive inactive ellipticals between L* and 10 L*. RLQ hosts are systematically more luminous than RQQ hosts by a factor of ~2. This difference is similar to that found for the high luminosity quasars. This luminosity gap appears to be independent of the rest-frame U-band luminosity but clearly correlated with the rest-frame R-band luminosity. The color difference between the RQQs and the RLQs is likely a combination of an intrinsic difference in the strength of the thermal and nonthermal components in the SEDs of RLQs and RQQs, and a selection effect due to internal dust extinction. For the combined set of quasars, we find a reasonable correlation between the nuclear and the host luminosities. This correlation is less apparent for RQQs than for RLQs. If the R-band luminosity is representative of the bolometric luminosity, and assuming that the host luminosity is proportional to the black hole mass, as observed in nearby massive spheroids, quasars emit with a relatively narrow range of power with respect to their Eddington luminosity and with the same distribution for RLQs and RQQs.Comment: Accepted for publication in ApJ, 24 pages, 4 figure

    Characterisation of host growth after infection with a broad-range freshwater cyanopodophage

    Get PDF
    Freshwater cyanophages are poorly characterised in comparison to their marine counterparts, however, the level of genetic diversity that exists in freshwater cyanophage communities is likely to exceed that found in marine environments, due to the habitat heterogeneity within freshwater systems. Many cyanophages are specialists, infecting a single host species or strain; however, some are less fastidious and infect a number of different host genotypes within the same species or even hosts from different genera. Few instances of host growth characterisation after infection by broad host-range phages have been described. Here we provide an initial characterisation of interactions between a cyanophage isolated from a freshwater fishing lake in the south of England and its hosts. Designated ΦMHI42, the phage is able to infect isolates from two genera of freshwater cyanobacteria, Planktothrix and Microcystis. Transmission Electron Microscopy and Atomic Force Microscopy indicate that ΦMHI42 is a member of the Podoviridae, albeit with a larger than expected capsid. The kinetics of host growth after infection with ΦMHI42 differed across host genera, species and strains in a way that was not related to the growth rate of the uninfected host. To our knowledge, this is the first characterisation of the growth of cyanobacteria in the presence of a broad host-range freshwater cyanophage

    Variations in type III effector repertoires do not correlate with differences in pathological phenotypes and host range observed for Xanthomonas citri pv. citri pathotypes

    Full text link
    Xanthomonas citri pv. citri (Xac) is a quarantine bacterium causing Asiatic citrus canker. Strains of Xac are classified as pathogenic variants i.e. pathotypes, according to their host range: strains of pathotype A infect a wide range of rutaceous species, whereas strains of pathotype A*/Aw infect a restricted host range consisting of Mexican lime (C. aurantifolia) and alemow (C. macrophylla). Based on a collection of 55 strains we investigated the role of type III effectors (T3E) in host specialization. By PCR we screened 56 Xanthomonas T3Es and showed that Xac possesses a repertoire of 28 effectors, 24 of which are shared by all strains, while 4 (xopAI, xopAD, xopAG and xopC1) are present only in some A*/ Aw strains. However, their distribution could not account for host specialization. XopAG is present in all Aw strains, but also in three A* strains genetically distant from Aw , and all xopAG-containing strains induced HR-like reactions on grapefruit and sweet orange. A strains are genetically less diverse, induce identical phenotypic responses, and share exactly the same T3Es. Conversely, A*/ Aw strains exhibited a wider genetic diversity in which clades correlated to geographical origin and T3Es repertoire but not to pathogenicity. A*/Aw strains showed a broad range of reactions on several Citrus, but genetically related strains did not share phenotypic responses. Our results showed that A*/Aw strains are more variable (genetically and pathogenetically) than initially expected and that this variability should not be ignored when trying to describe mechanisms involved in the pathogen evolution and host specialization. (Texte intégral

    Gamma-Ray Bursts Trace UV Metrics of Star Formation over 3 < z < 5

    Get PDF
    We present the first uniform treatment of long duration gamma-ray burst (GRB) host galaxy detections and upper limits over the redshift range 3<z<5, a key epoch for observational and theoretical efforts to understand the processes, environments, and consequences of early cosmic star formation. We contribute deep imaging observations of 13 GRB positions yielding the discovery of eight new host galaxies. We use this dataset in tandem with previously published observations of 31 further GRB positions to estimate or constrain the host galaxy rest-frame ultraviolet (UV; 1600 A) absolute magnitudes M_UV. We then use the combined set of 44 M_UV estimates and limits to construct the M_UV luminosity function (LF) for GRB host galaxies over 3<z<5 and compare it to expectations from Lyman break galaxy (LBG) photometric surveys with the Hubble Space Telescope. Adopting standard prescriptions for the luminosity dependence of galaxy dust obscuration (and hence, total star formation rate), we find that our LF is compatible with LBG observations over a factor of 600x in host luminosity, from M_UV = -22.5 mag to >-15.6 mag, and with extrapolations of the assumed Schechter-type LF well beyond this range. We review proposed astrophysical and observational biases for our sample, and find they are for the most part minimal. We therefore conclude, as the simplest interpretation of our results, that GRBs successfully trace UV metrics of cosmic star formation over the range 3<z<5. Our findings suggest GRBs are providing an accurate picture of star formation processes from z ~3 out to the highest redshifts.Comment: publ. ApJ 809 (2015) 76; 14 figures; replacement to reflect changes to v1 (rounding effects, diff. LF from Bouwens
    corecore