1,403,935 research outputs found

    Isolated Horizon, Killing Horizon and Event Horizon

    Get PDF
    We consider space-times which in addition to admitting an isolated horizon also admit Killing horizons with or without an event horizon. We show that an isolated horizon is a Killing horizon provided either (1) it admits a stationary neighbourhood or (2) it admits a neighbourhood with two independent, commuting Killing vectors. A Killing horizon is always an isolated horizon. For the case when an event horizon is definable, all conceivable relative locations of isolated horizon and event horizons are possible. Corresponding conditions are given.Comment: 14 pages, Latex, no figures. Some arguments tightened. To appear in Class. Quant. Gra

    Horizon Pretracking

    Full text link
    We introduce horizon pretracking as a method for analysing numerically generated spacetimes of merging black holes. Pretracking consists of following certain modified constant expansion surfaces during a simulation before a common apparent horizon has formed. The tracked surfaces exist at all times, and are defined so as to include the common apparent horizon if it exists. The method provides a way for finding this common apparent horizon in an efficient and reliable manner at the earliest possible time. We can distinguish inner and outer horizons by examining the distortion of the surface. Properties of the pretracking surface such as its expansion, location, shape, area, and angular momentum can also be used to predict when a common apparent horizon will appear, and its characteristics. The latter could also be used to feed back into the simulation by adapting e.g. boundary or gauge conditions even before the common apparent horizon has formed.Comment: 14 pages, 8 figures, minor change

    Near Horizon Superspace

    Get PDF
    The adS_{p+2} x S^{d-p-2} geometry of the near horizon branes is promoted to a supergeometry: the solution of the supergravity constraints for the vielbein, connection and form superfields are found. This supergeometry can be used for the construction of new superconformal theories. We also discuss the Green-Schwarz action for a type IIB string on adS_5 x S_5.Comment: 11 pages, LaTe

    Horizon Entropy

    Get PDF
    Although the laws of thermodynamics are well established for black hole horizons, much less has been said in the literature to support the extension of these laws to more general settings such as an asymptotic de Sitter horizon or a Rindler horizon (the event horizon of an asymptotic uniformly accelerated observer). In the present paper we review the results that have been previously established and argue that the laws of black hole thermodynamics, as well as their underlying statistical mechanical content, extend quite generally to what we call here "causal horizons". The root of this generalization is the local notion of horizon entropy density.Comment: 21 pages, one figure, to appear in a special issue of Foundations of Physics in honor of Jacob Bekenstei

    Thermodynamical properties of dark energy with the equation of state ω=ω0+ω1z% \omega =\omega_{0}+\omega_{1}z

    Full text link
    The thermodynamical properties of dark energy are usually investigated with the equation of state ω=ω0+ω1z\omega =\omega_{0}+\omega_{1}z. Recent observations show that our universe is accelerating, and the apparent horizon and the event horizon vary with redshift zz. When definitions of the temperature and entropy of a black hole are used to the two horizons of the universe, we examine the thermodynamical properties of the universe which is enveloped by the apparent horizon and the event horizon respectively. We show that the first and the second laws of thermodynamics inside the apparent horizon in any redshift are satisfied, while they are broken down inside the event horizon in some redshift. Therefore, the apparent horizon for the universe may be the boundary of thermodynamical equilibrium for the universe like the event horizon for a black hole.Comment: 6 pages, 5 figures, Accepted for publication in Physical Review

    Beyond the Horizon

    Full text link
    Cosmic horizons arise in general relativity in the context of black holes and in certain cosmologies. Classically, regions beyond a horizon are inaccessible to causal observers. However, quantum mechanical correlations may exist across horizons that may influence local observations. For the case of de Sitter space, we show how a single particle excitation behind the horizon changes the density matrix governing local observables. As compared to the vacuum state, we calculate the change in the average energy and entropy per unit volume. This illustrates what may be a generic property allowing some features of spacetime beyond a horizon to be inferred.Comment: 9 pages, 1 figur

    Infrared horizon locator

    Get PDF
    A precise method and apparatus for locating the earth's infrared horizon from space that is independent of season and latitude is described. First and second integrations of the earth's radiance profile are made from space to earth with the second delayed with respect to the first. The second integration is multiplied by a predetermined constant R and then compared with the first integration. When the two are equal the horizon is located

    Horizon Report 2009

    Get PDF
    El informe anual Horizon investiga, identifica y clasifica las tecnologías emergentes que los expertos que lo elaboran prevén tendrán un impacto en la enseñanza aprendizaje, la investigación y la producción creativa en el contexto educativo de la enseñanza superior. También estudia las tendencias clave que permiten prever el uso que se hará de las mismas y los retos que ellos suponen para las aulas. Cada edición identifica seis tecnologías o prácticas. Dos cuyo uso se prevé emergerá en un futuro inmediato (un año o menos) dos que emergerán a medio plazo (en dos o tres años) y dos previstas a más largo plazo (5 años)

    Horizon Mass Theorem

    Full text link
    A new theorem for black holes is found. It is called the horizon mass theorem. The horizon mass is the mass which cannot escape from the horizon of a black hole. For all black holes: neutral, charged or rotating, the horizon mass is always twice the irreducible mass observed at infinity. Previous theorems on black holes are: 1. the singularity theorem, 2. the area theorem, 3. the uniqueness theorem, 4. the positive energy theorem. The horizon mass theorem is possibly the last general theorem for classical black holes. It is crucial for understanding Hawking radiation and for investigating processes occurring near the horizon.Comment: A new theorem for black holes is establishe
    corecore