22,545 research outputs found
Machine learning approach for segmenting glands in colon histology images using local intensity and texture features
Colon Cancer is one of the most common types of cancer. The treatment is
planned to depend on the grade or stage of cancer. One of the preconditions for
grading of colon cancer is to segment the glandular structures of tissues.
Manual segmentation method is very time-consuming, and it leads to life risk
for the patients. The principal objective of this project is to assist the
pathologist to accurate detection of colon cancer. In this paper, the authors
have proposed an algorithm for an automatic segmentation of glands in colon
histology using local intensity and texture features. Here the dataset images
are cropped into patches with different window sizes and taken the intensity of
those patches, and also calculated texture-based features. Random forest
classifier has been used to classify this patch into different labels. A
multilevel random forest technique in a hierarchical way is proposed. This
solution is fast, accurate and it is very much applicable in a clinical setup
Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms
Currently, diagnosis of skin diseases is based primarily on visual pattern
recognition skills and expertise of the physician observing the lesion. Even
though dermatologists are trained to recognize patterns of morphology, it is
still a subjective visual assessment. Tools for automated pattern recognition
can provide objective information to support clinical decision-making.
Noninvasive skin imaging techniques provide complementary information to the
clinician. In recent years, optical coherence tomography has become a powerful
skin imaging technique. According to specific functional needs, skin
architecture varies across different parts of the body, as do the textural
characteristics in OCT images. There is, therefore, a critical need to
systematically analyze OCT images from different body sites, to identify their
significant qualitative and quantitative differences. Sixty-three optical and
textural features extracted from OCT images of healthy and diseased skin are
analyzed and in conjunction with decision-theoretic approaches used to create
computational models of the diseases. We demonstrate that these models provide
objective information to the clinician to assist in the diagnosis of
abnormalities of cutaneous microstructure, and hence, aid in the determination
of treatment. Specifically, we demonstrate the performance of this methodology
on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)
from healthy tissue
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images
The analysis of glandular morphology within colon histopathology images is an
important step in determining the grade of colon cancer. Despite the importance
of this task, manual segmentation is laborious, time-consuming and can suffer
from subjectivity among pathologists. The rise of computational pathology has
led to the development of automated methods for gland segmentation that aim to
overcome the challenges of manual segmentation. However, this task is
non-trivial due to the large variability in glandular appearance and the
difficulty in differentiating between certain glandular and non-glandular
histological structures. Furthermore, a measure of uncertainty is essential for
diagnostic decision making. To address these challenges, we propose a fully
convolutional neural network that counters the loss of information caused by
max-pooling by re-introducing the original image at multiple points within the
network. We also use atrous spatial pyramid pooling with varying dilation rates
for preserving the resolution and multi-level aggregation. To incorporate
uncertainty, we introduce random transformations during test time for an
enhanced segmentation result that simultaneously generates an uncertainty map,
highlighting areas of ambiguity. We show that this map can be used to define a
metric for disregarding predictions with high uncertainty. The proposed network
achieves state-of-the-art performance on the GlaS challenge dataset and on a
second independent colorectal adenocarcinoma dataset. In addition, we perform
gland instance segmentation on whole-slide images from two further datasets to
highlight the generalisability of our method. As an extension, we introduce
MILD-Net+ for simultaneous gland and lumen segmentation, to increase the
diagnostic power of the network.Comment: Initial version published at Medical Imaging with Deep Learning
(MIDL) 201
- …
