11,641 research outputs found
Indications of superconductivity in doped highly oriented pyrolytic graphite
We have observed possible superconductivity using standard resistance vs.
temperature techniques in phosphorous ion implanted Highly Oriented Pyrolytic
Graphite. The onset appears to be above 100 K and quenching by an applied
magnetic field has been observed. The four initial boron implanted samples
showed no signs of becoming superconductive whereas all four initial and eight
subsequent samples that were implanted with phosphorous showed at least some
sign of the existence of small amounts of the possibly superconducting phases.
The observed onset temperature is dependent on both the number of electron
donors present and the amount of damage done to the graphene sub-layers in the
Highly Oriented Pyrolytic Graphite samples. As a result the data appears to
suggest that the potential for far higher onset temperatures in un-damaged
doped graphite exists.Comment: 7 pages, 1 table, 5 figures, 11 references, Acknowledgments section
was correcte
Scanning tunnelling miscroscopy/spectroscopy and X-ray absorption spectroscopy studies of Co adatoms and anoislands on highly oriented pyrolytic graphite
In this paper, the scanning tunneling microscopy, scanning tunneling spectroscopy and X-ray absorption spectroscopy of cobalt adatoms and nanoislands were studied on a highly oriented pyrolytic graphite. Local electronic structure were observed by STS.\ud
\u
"Oxide-free" tip for scanning tunneling microscopy
We report a new tip for scanning tunneling microscopy and a tip repair procedure that allows one to reproducibly obtain atomic images of highly oriented pyrolytic graphite with previously inoperable tips. The tips are shown to be relatively oxide-free and highly resistant to oxidation. The tips are fabricated with graphite by two distinct methods
Definitive evidence for fast electron transfer at pristine basal plane graphite from high-resolution electrochemical imaging
After all, it's active: High-resolution scanning electrochemical cell microscopy (SECCM) demonstrates that electron transfer at the basal plane of highly oriented pyrolytic graphite (HOPG) is fast. This finding requires radical revision of the current textbook model for HOPG electrochemistry
Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects
We report on scanning tunneling microscopy and spectroscopy of grain
boundaries in highly oriented pyrolytic graphite. Grain boundaries showed a
periodic structure and an enhanced charge density compared to the bare graphite
surface. Two possible periodic structures have been observed along grain
boundaries. A geometrical model producing periodically distributed point
defects on the basal plane of graphite has been proposed to explain the
structure of grain boundaries. Scanning tunneling spectroscopy on grain
boundaries revealed two strong localized states at -0.3 V and 0.4 V.Comment: 5 pages, 5 figure
Heat transfer device and method of making the same
Gas derived graphite fibers are generated by the decomposition of an organic gas. These fibers when joined with a suitable binder are used to make a high thermal conductivity composite material. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers
Induced Magnetic Ordering by Proton Irradiation in Graphite
We provide evidence that proton irradiation of energy 2.25 MeV on
highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism.
Measurements performed with a superconducting quantum interferometer device
(SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering
is stable at room temperature.Comment: 3 Figure
Integer Quantum Hall Effect in Graphite
We present Hall effect measurements on highly oriented pyrolytic graphite
that indicate the occurrence of the integer quantum-Hall-effect. The evidence
is given by the observation of regular plateau-like structures in the field
dependence of the transverse conductivity obtained in van der Pauw
configuration. Measurements with the Corbino-disk configuration support this
result and indicate that the quasi-linear and non-saturating longitudinal
magnetoresistance in graphite is governed by the Hall effect in agreement with
a recent theoretical model for disordered semiconductors.Comment: 3 figures, to be published in Solid State Communication (2006
- …
