45,407 research outputs found

    Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions

    Full text link
    Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these "omics" data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of data

    Systems biology in inflammatory bowel diseases

    Get PDF
    Purpose of review: Ulcerative colitis (UC) and Crohn’s Disease (CD) are the two predominant types of inflammatory bowel disease (IBD), affecting over 1.4 million individuals in the US. IBD results from complex interactions between pathogenic components, including genetic and epigenetic factors, the immune response and the microbiome through an unknown sequence of events. The purpose of this review is to describe a system biology approach to IBD as a novel and exciting methodology aiming at developing novel IBD therapeutics based on the integration of molecular and cellular "omics" data. Recent Findings: Recent evidence suggested the presence of genetic, epigenetic, transcriptomic, proteomic and metabolomic alterations in IBD patients. Furthermore, several studies have shown that different cell types, including fibroblasts, epithelial, immune and endothelial cells together with the intestinal microbiota are involved in IBD pathogenesis. Novel computational methodologies have been developed aiming to integrate high - throughput molecular data. Summary: A systems biology approach could potentially identify the central regulators (hubs) in the IBD interactome and improve our understanding of the molecular mechanisms involved in IBD pathogenesis. The future IBD therapeutics should be developed on the basis of targeting the central hubs in the IBD network

    Systems biology in animal sciences

    Get PDF
    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed ‘omics’ technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A ‘system’ approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with ‘system approaches’ in animal sciences, providing exciting opportunities to predict and modulate animal traits

    Mapping the Human Exposome to Uncover the Causes of Breast Cancer.

    Get PDF
    Breast cancer is an important cause of morbidity and mortality for women, yet a significant proportion of variation in individual risk is unexplained. It is reasonable to infer that unexplained breast cancer risks are caused by a myriad of exposures and their interactions with genetic factors. Most epidemiological studies investigating environmental contribution to breast cancer risk have focused on a limited set of exposures and outcomes based on a priori knowledge. We hypothesize that by measuring a rich set of molecular information with omics (e.g., metabolomics and adductomics) and comparing these profiles using a case-control design we can pinpoint novel environmental risk factors. Specifically, exposome-wide association study approaches can be used to compare molecular profiles between controls and either breast cancer cases or participants with phenotypic measures associated with breast cancer (e.g., high breast density, chronic inflammation). Current challenges in annotating compound peaks from biological samples can be addressed by creating libraries of environmental chemicals that are breast cancer relevant using publicly available high throughput exposure and toxicity data, and by mass spectra fragmentation. This line of discovery and innovation will extend understanding of how environmental exposures interact with genetics to affect health, and provide evidence to support new breast cancer prevention strategies

    Personalized medicine—a modern approach for the diagnosis and management of hypertension

    Get PDF
    The main goal of treating hypertension is to reduce blood pressure to physiological levels and thereby prevent risk of cardiovascular disease and hypertension-associated target organ damage. Despite reductions in major risk factors and the availability of a plethora of effective antihypertensive drugs, the control of blood pressure to target values is still poor due to multiple factors including apparent drug resistance and lack of adherence. An explanation for this problem is related to the current reductionist and ‘trial-and-error’ approach in the management of hypertension, as we may oversimplify the complex nature of the disease and not pay enough attention to the heterogeneity of the pathophysiology and clinical presentation of the disorder. Taking into account specific risk factors, genetic phenotype, pharmacokinetic characteristics, and other particular features unique to each patient, would allow a personalized approach to managing the disease. Personalized medicine therefore represents the tailoring of medical approach and treatment to the individual characteristics of each patient and is expected to become the paradigm of future healthcare. The advancement of systems biology research and the rapid development of high-throughput technologies, as well as the characterization of different –omics, have contributed to a shift in modern biological and medical research from traditional hypothesis-driven designs toward data-driven studies and have facilitated the evolution of personalized or precision medicine for chronic diseases such as hypertension

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Tricks to translating TB transcriptomics.

    Get PDF
    Transcriptomics and other high-throughput methods are increasingly applied to questions relating to tuberculosis (TB) pathogenesis. Whole blood transcriptomics has repeatedly been applied to define correlates of TB risk and has produced new insight into the late stage of disease pathogenesis. In a novel approach, authors of a recently published study in Science Translational Medicine applied complex data analysis of existing TB transcriptomic datasets, and in vitro models, in an attempt to identify correlates of protection in TB, which are crucially required for the development of novel TB diagnostics and therapeutics to halt this global epidemic. Utilizing latent TB infection (LTBI) as a surrogate of protection, they identified IL-32 as a mediator of interferon gamma (IFNγ)-vitamin D dependent antimicrobial immunity and a marker of LTBI. Here, we provide a review of all TB whole-blood transcriptomic studies to date in the context of identifying correlates of protection, discuss potential pitfalls of combining complex analyses originating from such studies, the importance of detailed metadata to interpret differential patient classification algorithms, the effect of differing circulating cell populations between patient groups on the interpretation of resulting biomarkers and we decipher weighted gene co-expression network analysis (WGCNA), a recently developed systems biology tool which holds promise of identifying novel pathway interactions in disease pathogenesis. In conclusion, we propose the development of an integrated OMICS platform and open access to detailed metadata, in order for the TB research community to leverage the vast array of OMICS data being generated with the aim of unraveling the holy grail of TB research: correlates of protection
    corecore