911,516 research outputs found
Approximation of high-dimensional parametric PDEs
Parametrized families of PDEs arise in various contexts such as inverse
problems, control and optimization, risk assessment, and uncertainty
quantification. In most of these applications, the number of parameters is
large or perhaps even infinite. Thus, the development of numerical methods for
these parametric problems is faced with the possible curse of dimensionality.
This article is directed at (i) identifying and understanding which properties
of parametric equations allow one to avoid this curse and (ii) developing and
analyzing effective numerical methodd which fully exploit these properties and,
in turn, are immune to the growth in dimensionality. The first part of this
article studies the smoothness and approximability of the solution map, that
is, the map where is the parameter value and is the
corresponding solution to the PDE. It is shown that for many relevant
parametric PDEs, the parametric smoothness of this map is typically holomorphic
and also highly anisotropic in that the relevant parameters are of widely
varying importance in describing the solution. These two properties are then
exploited to establish convergence rates of -term approximations to the
solution map for which each term is separable in the parametric and physical
variables. These results reveal that, at least on a theoretical level, the
solution map can be well approximated by discretizations of moderate
complexity, thereby showing how the curse of dimensionality is broken. This
theoretical analysis is carried out through concepts of approximation theory
such as best -term approximation, sparsity, and -widths. These notions
determine a priori the best possible performance of numerical methods and thus
serve as a benchmark for concrete algorithms. The second part of this article
turns to the development of numerical algorithms based on the theoretically
established sparse separable approximations. The numerical methods studied fall
into two general categories. The first uses polynomial expansions in terms of
the parameters to approximate the solution map. The second one searches for
suitable low dimensional spaces for simultaneously approximating all members of
the parametric family. The numerical implementation of these approaches is
carried out through adaptive and greedy algorithms. An a priori analysis of the
performance of these algorithms establishes how well they meet the theoretical
benchmarks
Reach Set Approximation through Decomposition with Low-dimensional Sets and High-dimensional Matrices
Approximating the set of reachable states of a dynamical system is an
algorithmic yet mathematically rigorous way to reason about its safety.
Although progress has been made in the development of efficient algorithms for
affine dynamical systems, available algorithms still lack scalability to ensure
their wide adoption in the industrial setting. While modern linear algebra
packages are efficient for matrices with tens of thousands of dimensions,
set-based image computations are limited to a few hundred. We propose to
decompose reach set computations such that set operations are performed in low
dimensions, while matrix operations like exponentiation are carried out in the
full dimension. Our method is applicable both in dense- and discrete-time
settings. For a set of standard benchmarks, it shows a speed-up of up to two
orders of magnitude compared to the respective state-of-the art tools, with
only modest losses in accuracy. For the dense-time case, we show an experiment
with more than 10.000 variables, roughly two orders of magnitude higher than
possible with previous approaches
Tractability of the approximation of high-dimensional rank one tensors
We study the approximation of high-dimensional rank one tensors using point
evaluations and consider deterministic as well as randomized algorithms. We
prove that for certain parameters (smoothness and norm of the th derivative)
this problem is intractable while for other parameters the problem is tractable
and the complexity is only polynomial in the dimension for every fixed
. For randomized algorithms we completely characterize the set
of parameters that lead to easy or difficult problems, respectively. In the
"difficult" case we modify the class to obtain a tractable problem: The problem
gets tractable with a polynomial (in the dimension) complexity if the support
of the function is not too small.Comment: 15 pages, to appear in Constr. Appro
- …
