911,516 research outputs found

    Approximation of high-dimensional parametric PDEs

    Get PDF
    Parametrized families of PDEs arise in various contexts such as inverse problems, control and optimization, risk assessment, and uncertainty quantification. In most of these applications, the number of parameters is large or perhaps even infinite. Thus, the development of numerical methods for these parametric problems is faced with the possible curse of dimensionality. This article is directed at (i) identifying and understanding which properties of parametric equations allow one to avoid this curse and (ii) developing and analyzing effective numerical methodd which fully exploit these properties and, in turn, are immune to the growth in dimensionality. The first part of this article studies the smoothness and approximability of the solution map, that is, the map au(a)a\mapsto u(a) where aa is the parameter value and u(a)u(a) is the corresponding solution to the PDE. It is shown that for many relevant parametric PDEs, the parametric smoothness of this map is typically holomorphic and also highly anisotropic in that the relevant parameters are of widely varying importance in describing the solution. These two properties are then exploited to establish convergence rates of nn-term approximations to the solution map for which each term is separable in the parametric and physical variables. These results reveal that, at least on a theoretical level, the solution map can be well approximated by discretizations of moderate complexity, thereby showing how the curse of dimensionality is broken. This theoretical analysis is carried out through concepts of approximation theory such as best nn-term approximation, sparsity, and nn-widths. These notions determine a priori the best possible performance of numerical methods and thus serve as a benchmark for concrete algorithms. The second part of this article turns to the development of numerical algorithms based on the theoretically established sparse separable approximations. The numerical methods studied fall into two general categories. The first uses polynomial expansions in terms of the parameters to approximate the solution map. The second one searches for suitable low dimensional spaces for simultaneously approximating all members of the parametric family. The numerical implementation of these approaches is carried out through adaptive and greedy algorithms. An a priori analysis of the performance of these algorithms establishes how well they meet the theoretical benchmarks

    Reach Set Approximation through Decomposition with Low-dimensional Sets and High-dimensional Matrices

    Full text link
    Approximating the set of reachable states of a dynamical system is an algorithmic yet mathematically rigorous way to reason about its safety. Although progress has been made in the development of efficient algorithms for affine dynamical systems, available algorithms still lack scalability to ensure their wide adoption in the industrial setting. While modern linear algebra packages are efficient for matrices with tens of thousands of dimensions, set-based image computations are limited to a few hundred. We propose to decompose reach set computations such that set operations are performed in low dimensions, while matrix operations like exponentiation are carried out in the full dimension. Our method is applicable both in dense- and discrete-time settings. For a set of standard benchmarks, it shows a speed-up of up to two orders of magnitude compared to the respective state-of-the art tools, with only modest losses in accuracy. For the dense-time case, we show an experiment with more than 10.000 variables, roughly two orders of magnitude higher than possible with previous approaches

    Tractability of the approximation of high-dimensional rank one tensors

    Full text link
    We study the approximation of high-dimensional rank one tensors using point evaluations and consider deterministic as well as randomized algorithms. We prove that for certain parameters (smoothness and norm of the rrth derivative) this problem is intractable while for other parameters the problem is tractable and the complexity is only polynomial in the dimension for every fixed ε>0\varepsilon>0. For randomized algorithms we completely characterize the set of parameters that lead to easy or difficult problems, respectively. In the "difficult" case we modify the class to obtain a tractable problem: The problem gets tractable with a polynomial (in the dimension) complexity if the support of the function is not too small.Comment: 15 pages, to appear in Constr. Appro
    corecore