28,300 research outputs found

    A lupine (Lupinus angustifolious L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice

    Get PDF
    Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide that has been isolated from lupine (Lupinus angustifolius L.) and shows anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat-diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in drinking water at 0.5 mg kg-1 day-1 or 1 mg kg-1 day-1. To determine the ability of GPETAFLR to improve the onset and progression of non-alcoholic fatty liver disease, histological studies, hepatic enzyme profiles, inflammatory cytokine and lipid metabolism-related genes and proteins were analysed. Our results suggested that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption can repair HFD-induced hepatic damage possibly via modifications of liver's lipid signalling pathways

    SAT-158 Offspring Exposed to Maternal High Fat Diet Exhibits Systemic Inflammation and Pancreatic Islet Dysfunction

    Get PDF
    Offspring born to overweight mothers are more likely to develop dysregulated immune response1, obesity1 and pancreatic islet dysfunction2. These offspring have increased inflammation at birth3 and at least until childhood4. We hypothesize that heightened inflammation in offspring of overweight mothers increases offspring risks of pancreatic islet dysfunction. We induced maternal overweight by providing 45% high fat diet (HFD) to female mice 2 - 4 weeks before pregnancy until weaning. When compared to controls, P21 weanlings of HFD mothers had impaired glucose tolerance in dose and gender dependent manner [GTT AUC: male 2-week HFD* 30 ± 6% higher; male 4-week HFD* 37± 3% higher: 9-11/group; female 2-week HFD 13 ± 5% higher; female 4-week HFD* 22 ± 3% higher: 3-9/group, *p<0.05 compared to controls]. Glucose intolerance persisted in 8-week-old male from 2-week HFD mothers (p<0.05, n=6-9/group), with decreased pancreatic islets glucose induced calcium response measured using Fura-2AM calcium imaging (F1/F0 Con:2.00 ± 0.06, HFD2W: 1.69±0.12*, HFD4w: 0.71±0.09*, n =3/group). Cytokines production in the serum, macrophage response and metabolic phenotypes of offspring were assessed on postnatal day 21 (P21) and at 8 weeks old. Compared to control pups, weanling of HFD mothers had elevated serum/plasma IL-1b level along with increased polarization of M1 macrophages and decreased M2 macrophages, as well as an increase of IL-1b secretion in LPS-stimulated macrophages. At 8 weeks of age, HFD male offspring had increased activation markers of splenic dendritic cells indicating a development of systemic inflammatory response early in life. Taken together, our findings suggest that mice offspring from HFD mothers have pancreatic dysfunction, and an inflammatory response. This work is funded by the Riley Children’s Foundation. 1. Kelishadi, R., Roufarshbaf, M., Soheili, S., Payghambarzadeh, F. & Masjedi, M. Association of Childhood Obesity and the Immune System: A Systematic Review of Reviews. Child. Obes. Print 13, 332-346 (2017). 2. Graus-Nunes, F. et al. Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition 31, 380-387 (2015). 3. Dosch, N. C. et al. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J. Pediatr. 172, 20-28 (2016). 4. Leibowitz, K. L. et al. Maternal obesity associated with inflammation in their children. World J. Pediatr. WJP 8, 76-79 (2012)

    Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity

    Get PDF
    Aims Obesity is a risk factor for diabetes and cardiovascular diseases, with the incidence of these disorders becoming epidemic. Pathogenic responses to obesity have been ascribed to adipose tissue (AT) dysfunction that promotes bioactive mediator secretion from visceral AT and the initiation of pro-inflammatory events that induce oxidative stress and tissue dysfunction. Current understanding supports that suppressing pro-inflammatory and oxidative events promotes improved metabolic and cardiovascular function. In this regard, electrophilic nitro-fatty acids display pleiotropic anti-inflammatory signalling actions. Methods and results It was hypothesized that high-fat diet (HFD)-induced inflammatory and metabolic responses, manifested by loss of glucose tolerance and vascular dysfunction, would be attenuated by systemic administration of nitrooctadecenoic acid (OA-NO2). Male C57BL/6j mice subjected to a HFD for 20 weeks displayed increased adiposity, fasting glucose, and insulin levels, which led to glucose intolerance and pulmonary hypertension, characterized by increased right ventricular (RV) end-systolic pressure (RVESP) and pulmonary vascular resistance (PVR). This was associated with increased lung xanthine oxidoreductase (XO) activity, macrophage infiltration, and enhanced expression of pro-inflammatory cytokines. Left ventricular (LV) end-diastolic pressure remained unaltered, indicating that the HFD produces pulmonary vascular remodelling, rather than LV dysfunction and pulmonary venous hypertension. Administration of OA-NO2 for the final 6.5 weeks of HFD improved glucose tolerance and significantly attenuated HFD-induced RVESP, PVR, RV hypertrophy, lung XO activity, oxidative stress, and pro-inflammatory pulmonary cytokine levels. Conclusions These observations support that the pleiotropic signalling actions of electrophilic fatty acids represent a therapeutic strategy for limiting the complex pathogenic responses instigated by obesity.Fil: Kelley, Eric E.. University of Pittsburgh; Estados UnidosFil: Baust, Jeff. University of Pittsburgh; Estados UnidosFil: Bonacci, Gustavo Roberto. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Golin Bisello, Franca. University of Pittsburgh; Estados UnidosFil: Devlin, Jason E.. University of Pittsburgh; Estados UnidosFil: Croix, Claudette M. St.. University of Pittsburgh; Estados UnidosFil: Watkins, Simon C.. University of Pittsburgh; Estados UnidosFil: Gor, Sonia. University of Pittsburgh; Estados UnidosFil: Cantu Medellin, Nadiezhda. University of Pittsburgh; Estados UnidosFil: Weidert, Eric R.. University of Pittsburgh; Estados UnidosFil: Frisbee,Jefferson C.. University of Virginia; Estados UnidosFil: Gladwin, Mark T.. University of Pittsburgh; Estados UnidosFil: Champion, Hunter C.. University of Pittsburgh; Estados UnidosFil: Freeman, Bruce A.. University of Pittsburgh; Estados UnidosFil: Khoo, Nicholas K.H.. University of Pittsburgh; Estados Unido

    High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts.

    Get PDF
    Key pointsPatients with diabetes show a blunted cardiac inotropic response to β-adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β-adrenergically induced contractile function in isolated cardiomyocytes and Langendorff-perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high-fat diet (HFD) feeding on the cardiac β2 -adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β-adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2 -adrenergic receptor phosphorylation at protein kinase A and G-protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications.AbstractPatients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high-fat diet (HFD) on the insulin-adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD-fed mice displayed a significant elevation of phosphorylation of the β2 -adrenergic receptor (β2 AR) at both the protein kinase&nbsp;A site serine 261/262 and the G-protein-coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD-fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β2 AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD-fed mice. Together, these data indicate that HFD promotes phosphorylation of the β2 AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin-adrenergic signalling network might be effective in prevention of cardiac complications in diabetes

    Acute High Fat Diet Consumption Activates the Mesolimbic Circuit and Requires Orexin Signaling in a Mouse Model

    Get PDF
    Overconsumption of palatable energy-dense foods has negative health implications and it is associated with obesity andseveral eating disorders. Currently, little is known about the neuronal circuitries activated by the acute ingestion of arewarding stimulus. Here, we used a combination of immunohistochemistry, pharmacology and neuronal tracing analysesto examine the role of the mesolimbic system in general, and the orexin neurons in particular, in a simple experimental testin which naı ̈ve mice are allowed to spontaneously eat a pellet of a high fat diet (HFD) for 2 h. We found that acute HFDactivates c-Fos expression in several reward-related brain areas, including the ventral tegmental area (VTA), nucleusaccumbens, central amygdala and lateral hypothalamic area. We also found that: i- HFD-mediated orosensory stimulationwas required for the mesolimbic pathway activation, ii- acute HFD differentially activates dopamine neurons of theparanigral, parabrachial pigmented and interfascicular sub-regions of the VTA, and iii- orexin neurons of the lateralhypothalamic area are responsive to acute HFD. Moreover, orexin signaling blockade, with the orexin 1 receptor antagonistSB-334867, reduces acute HFD consumption and c-Fos induction in the VTA but not in the other mesolimbic nuclei understudy. Finally, we found that most orexin neurons responsive to acute HFD innervate the VTA. Our results show that acuteHFD consumption recruits the mesolimbic system and that the full manifestation of this eating behavior requires theactivation of orexin signaling.Fil: Valdivia Torres, Lesly Spring. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Patrone, Anabela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Reynaldo, Mirta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Perello, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentin

    Administration of the antioxidant n-acetyl-cysteine in pregnant mice has long-term positive effects on metabolic and behavioral endpoints of male and female offspring prenatally exposed to a high-fat diet

    Get PDF
    A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother’s body weight and offspring’s weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females) and in the central nervous system (males). Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important long-term consequences on metabolic and behavioral endpoints
    corecore