22,488 research outputs found

    Enumeration of octagonal tilings

    Full text link
    Random tilings are interesting as idealizations of atomistic models of quasicrystals and for their connection to problems in combinatorics and algorithms. Of particular interest is the tiling entropy density, which measures the relation of the number of distinct tilings to the number of constituent tiles. Tilings by squares and 45 degree rhombi receive special attention as presumably the simplest model that has not yet been solved exactly in the thermodynamic limit. However, an exact enumeration formula can be evaluated for tilings in finite regions with fixed boundaries. We implement this algorithm in an efficient manner, enabling the investigation of larger regions of parameter space than previously were possible. Our new results appear to yield monotone increasing and decreasing lower and upper bounds on the fixed boundary entropy density that converge toward S = 0.36021(3)

    Spectral minimal partitions for a family of tori

    Full text link
    We study partitions of the rectangular two-dimensional flat torus of length 1 and width b into k domains, with b a parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, definedas the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are inparticular interested in the way these minimal partitions change when b is varied. We present herean improvement, when k is odd, of the results on transition values of b established by B. Helffer andT. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establishan improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of thetorus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and {\'E}. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give betterestimates near those transition values

    An algorithmic proof for the completeness of two-dimensional Ising model

    Full text link
    We show that the two dimensional Ising model is complete, in the sense that the partition function of any lattice model on any graph is equal to the partition function of the 2D Ising model with complex coupling. The latter model has all its spin-spin coupling equal to i\pi/4 and all the parameters of the original model are contained in the local magnetic fields of the Ising model. This result has already been derived by using techniques from quantum information theory and by exploiting the universality of cluster states. Here we do not use the quantum formalism and hence make the completeness result accessible to a wide audience. Furthermore our method has the advantage of being algorithmic in nature so that by following a set of simple graphical transformations, one is able to transform any discrete lattice model to an Ising model defined on a (polynomially) larger 2D lattice.Comment: 18 pages, 15 figures, Accepted for publication in Physical Review

    Subdivision into i-packings and S-packing chromatic number of some lattices

    Get PDF
    An ii-packing in a graph GG is a set of vertices at pairwise distance greater than ii. For a nondecreasing sequence of integers S=(s_1,s_2,)S=(s\_{1},s\_{2},\ldots), the SS-packing chromatic number of a graph GG is the least integer kk such that there exists a coloring of GG into kk colors where each set of vertices colored ii, i=1,,ki=1,\ldots, k, is an s_is\_i-packing. This paper describes various subdivisions of an ii-packing into jj-packings (j\textgreater{}i) for the hexagonal, square and triangular lattices. These results allow us to bound the SS-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S=(s_i,iN)S=(s\_{i}, i\in\mathbb{N}^{*}), s_i=d+(i1)/ns\_{i}=d+ \lfloor (i-1)/n \rfloor

    Duality with real-space renormalization and its application to bond percolation

    Full text link
    We obtain the exact solution of the bond-percolation thresholds with inhomogenous probabilities on the square lattice. Our method is based on the duality analysis with real-space renormalization, which is a profound technique invented in the spin-glass theory. Our formulation is a more straightforward way compared to the very recent study on the same problem [R. M. Ziff, et. al., J. Phys. A: Math. Theor. 45 (2012) 494005]. The resultant generic formulas from our derivation can give several estimations for the bond-percolation thresholds on other lattices rather than the square lattice.Comment: 10 pages, 9 figure
    corecore