76,242 research outputs found

    Epigenetic variation in plant responses to defence hormones

    Get PDF
    Background and Aims There is currently much speculation about the role of epigenetic variation as a determinant of heritable variation in ecologically important plant traits. However, we still know very little about the phenotypic consequences of epigenetic variation, in particular with regard to more complex traits related to biotic interactions. Methods Here, a test was carried out to determine whether variation in DNA methylation alone can cause heritable variation in plant growth responses to jasmonic acid and salicylic acid, two key hormones involved in induction of plant defences against herbivores and pathogens. In order to be able to ascribe phenotypic differences to epigenetic variation, the hormone responses were studied of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana - lines that are highly variable at the level of DNA methylation but nearly identical at the level of DNA sequence. Key Results Significant heritable variation was found among epiRILs both in the means of phenotypic traits, including growth rate, and in the degree to which these responded to treatment with jasmonic acid and salicylic acid. Moreover, there was a positive epigenetic correlation between the responses of different epiRILs to the two hormones, suggesting that plant responses to herbivore and pathogen attack may have a similar molecular epigenetic basis. Conclusions This study demonstrates that epigenetic variation alone can cause heritable variation in, and thus potentially microevolution of, plant responses to defence hormones. This suggests that part of the variation of plant defences observed in natural populations may be due to underlying epigenetic, rather than entirely genetic, variatio

    On Fodor on Darwin on Evolution

    Get PDF
    Jerry Fodor argues that Darwin was wrong about "natural selection" because (1) it is only a tautology rather than a scientific law that can support counterfactuals ("If X had happened, Y would have happened") and because (2) only minds can select. Hence Darwin's analogy with "artificial selection" by animal breeders was misleading and evolutionary explanation is nothing but post-hoc historical narrative. I argue that Darwin was right on all counts. Until Darwin's "tautology," it had been believed that either (a) God had created all organisms as they are, or (b) organisms had always been as they are. Darwin revealed instead that (c) organisms have heritable traits that evolved across time through random variation, with survival and reproduction in (changing) environments determining (mindlessly) which variants were successfully transmitted to the next generation. This not only provided the (true) alternative (c), but also the methodology for investigating which traits had been adaptive, how and why; it also led to the discovery of the genetic mechanism of the encoding, variation and evolution of heritable traits. Fodor also draws erroneous conclusions from the analogy between Darwinian evolution and Skinnerian reinforcement learning. Fodor’s skepticism about both evolution and learning may be motivated by an overgeneralization of Chomsky’s “poverty of the stimulus argument” -- from the origin of Universal Grammar (UG) to the origin of the “concepts” underlying word meaning, which, Fodor thinks, must be “endogenous,” rather than evolved or learned

    Cultural replication and microbial evolution

    Get PDF
    The aim of this paper is to argue that cultural evolution is in many ways much more similar to microbial than to macrobial biological evolution. As a result, we are better off using microbial evolution as the model of cultural evolution. And this shift from macrobial to microbial entails adjusting the theoretical models we can use for explaining cultural evolution

    Genetic Assimilation and Canalisation in the Baldwin Effect

    No full text
    The Baldwin Effect indicates that individually learned behaviours acquired during an organism’s lifetime can influence the evolutionary path taken by a population, without any direct Lamarckian transfer of traits from phenotype to genotype. Several computational studies modelling this effect have included complications that restrict its applicability. Here we present a simplified model that is used to reveal the essential mechanisms and highlight several conceptual issues that have not been clearly defined in prior literature. In particular, we suggest that canalisation and genetic assimilation, often conflated in previous studies, are separate concepts and the former is actually not required for non-heritable phenotypic variation to guide genetic variation. Additionally, learning, often considered to be essential for the Baldwin Effect, can be replaced with a more general phenotypic plasticity model. These simplifications potentially permit the Baldwin Effect to operate in much more general circumstances

    The Genetic Basis of Mutation Rate Variation in Yeast.

    Get PDF
    Mutations are the root source of genetic variation and underlie the process of evolution. Although the rates at which mutations occur vary considerably between species, little is known about differences within species, or the genetic and molecular basis of these differences. Here, we leveraged the power of the yeast Saccharomyces cerevisiae as a model system to uncover natural genetic variants that underlie variation in mutation rate. We developed a high-throughput fluctuation assay and used it to quantify mutation rates in seven natural yeast isolates and in 1040 segregant progeny from a cross between BY, a laboratory strain, and RM, a wine strain. We observed that mutation rate varies among yeast strains and is heritable (H 2 = 0.49). We performed linkage mapping in the segregants and identified four quantitative trait loci underlying mutation rate variation in the cross. We fine-mapped two quantitative trait loci to the underlying causal genes, RAD5 and MKT1, that contribute to mutation rate variation. These genes also underlie sensitivity to the DNA-damaging agents 4NQO and MMS, suggesting a connection between spontaneous mutation rate and mutagen sensitivity

    The Stabilizing Effect Of Intraspecific Genetic Variation On Population Dynamics In Novel And Ancestral Habitats

    Get PDF
    Recent studies show that intraspecific genetic variation in asexual species may have large effects on community and ecosystem functions, increasing their stability, productivity, and species richness. However, major questions regarding its population-level impact remain empirically unanswered: (a) How does intraspecific genetic diversity affect the ecological characteristics of sexual species, in which recombination can alter the outcome of causal mechanisms such as selection and niche diversification? (b) Does genetic diversity increase population dynamic stability? (c) Is the impact of genetic diversity dependent on the selective environment? To answer these questions, I founded replicate flour beetle (Tribolium castaneum) populations with different degrees of ecologically relevant, heritable trait variation and monitored their dynamics for approximately eight generations. I show that population stability and persistence increased with greater genetic variation but that the stabilizing effect was independent of the selective habitat (different proportions of ancestral and novel resources). Alleles from a single founding strain underwent a selective sweep in the homogeneous ancestral habitat but not in a novel heterogeneous habitat. These results expand current understanding of the ecological impacts of genetic diversity by showing that genetically more diverse sexual populations persist longer and are more stable but that the selective environment determines the mechanistic basis of increased stability.Integrative Biolog
    corecore