47,321 research outputs found

    ENVIRONMENTAL VARIABLES ASSOCIATED WITH INVASIVE GLOSSY BUCKTHORN (FRANGULA ALNUS MILL.) AND INDIRECT CONTROL STRATEGIES FOR FOREST MANAGERS

    Get PDF
    Glossy buckthorn (Frangula alnus Mill.) is one of the most prominent non-native invasive plant species affecting New England forests. It quickly invades a forest and can create a dense understory effectively altering the species composition and dynamics of that forest. To gain a better understanding of the environmental variables associated with glossy buckthorn density we sampled forests across New Hampshire with varying degrees of buckthorn invasion. The effect on tree regeneration was analyzed with measurements of height and abundance of glossy buckthorn and native regeneration. Glossy buckthorn was found to be at its highest densities in disturbed softwood forests that were historically old fields, specifically eastern white pine (Pinus strobus L.), with a thin organic layer and low herbaceous cover on drained loam and clay soils. The data show there is direct competition between glossy buckthorn and forest tree regeneration, although no relationship with regeneration shade tolerance was found. This information was used to create a prescription risk tree to aid forest managers in assessing the risk of buckthorn invasion and inhibition of tree regeneration associated with harvesting and suggests how to adapt their silvicultural prescriptions

    Effects of Harvesting on Herbaceous Layer Diversity of a Central Appalachian Hardwood Forest

    Get PDF
    Clearcutting is a common harvesting practice in many eastern hardwood forests. Among the vegetation strata of these forests, the herbaceous layer is potentially the most sensitive in its response to harvest-mediated disturbances and has the highest species diversity. Thus, it is important to understand the response of herbaceous layer diversity to forest harvesting. Previous work on clearcut and mature stands at the Fernow Experimental Forest (FEF), West Virginia, has shown that, although, harvesting did not alter appreciably herbaceous layer cover, it influenced the relationship of cover to biotic and abiotic factors, such as tree density and soil nutrients, respectively. The purpose of this study was to examine the response of species diversity of the herbaceous layer to harvesting at FEF. Fifteen circular, 0.04 ha sample plots were established in each of four watersheds (60 plots in total) representing two stand age categories: two watersheds with 20 years even-age stands following clearcutting and two watersheds with mature second growth stands. All woody stems ≥2.5 cm diameter at breast height were identified, tallied, and measured for diameter. The herbaceous layer was sampled by identifying all vascular plants ≤1 m in height and estimating cover for each species in each of 10 (1 m2) circular sub-plots per sample plot (600 sub-plots total). Species diversity for each plot was calculated from herbaceous layer data using the ln-based Shannon Index (H′) equation. Ten stand and soil variables also were measured on each plot. Mean herbaceous layer cover for clearcut versus mature stands was 27.2±14.3% versus 20.2±8.1% (P\u3e0.05), respectively and mean H′ was 1.67±0.42 versus 1.55±0.48 (P\u3e0.05), respectively. Herbaceous layer diversity was negatively correlated with cation exchange capacity and extractable Ca and Mg in the mineral soil in clearcut stands. In contrast, herbaceous layer diversity was positively correlated with soil organic matter and clay content. Although, 20 years of recovery after clearcutting did not have significant effects on the species diversity of the herbaceous layer when examining stand age means alone, harvesting did appear to influence the spatial relationships between herbaceous layer diversity and biotic factors (e.g. tree density) and abiotic factors (e.g. soil nutrients)

    Land Cover Classification from Multi-temporal, Multi-spectral Remotely Sensed Imagery using Patch-Based Recurrent Neural Networks

    Full text link
    Sustainability of the global environment is dependent on the accurate land cover information over large areas. Even with the increased number of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric and temporal characteristics and the new data distribution policy, most existing land cover datasets were derived from a pixel-based single-date multi-spectral remotely sensed image with low accuracy. To improve the accuracy, the bottleneck is how to develop an accurate and effective image classification technique. By incorporating and utilizing the complete multi-spectral, multi-temporal and spatial information in remote sensing images and considering their inherit spatial and sequential interdependence, we propose a new patch-based RNN (PB-RNN) system tailored for multi-temporal remote sensing data. The system is designed by incorporating distinctive characteristics in multi-temporal remote sensing data. In particular, it uses multi-temporal-spectral-spatial samples and deals with pixels contaminated by clouds/shadow present in the multi-temporal data series. Using a Florida Everglades ecosystem study site covering an area of 771 square kilo-meters, the proposed PB-RNN system has achieved a significant improvement in the classification accuracy over pixel-based RNN system, pixel-based single-imagery NN system, pixel-based multi-images NN system, patch-based single-imagery NN system and patch-based multi-images NN system. For example, the proposed system achieves 97.21% classification accuracy while a pixel-based single-imagery NN system achieves 64.74%. By utilizing methods like the proposed PB-RNN one, we believe that much more accurate land cover datasets can be produced over large areas efficiently

    Fire Fuel Protocol

    Get PDF
    The purpose of the resource is to measure the different types of fuels for fires. Educational levels: Middle school, High school

    Inventory and Characterization of the Riparian Zone of the Current and Jacks Fork Rivers

    Get PDF
    The ecological, recreational, and economic value of the 134 mile (216 km) riparian corridor within the Ozark National Scenic Riverways (ONSR) is of great interest to land managers and conservationists. Recent interest in applying ecosystem management to forest systems has necessitated a fresh look at the tools and methods in use to assess existing patterns of plant community structure and diversity. The purpose and objective of the study described in this report was to initiate a series of vegetation studies that could be integrated with existing research and management infonnation on the riparian vegetation in the ONSR. Defining the compositional and spatial attributes of the riparian corridor were at the core of our research efforts. We used multivariate analysis and ordination techniques to characterize the composition and distribution of woody and herbaceous vegetation within the ONSR

    Former land use affects the nitrogen and phosphorus concentrations and biomass of forest herbs

    Get PDF
    The colonization rates of understorey plants into forests growing on former agricultural land differ remarkably among species. Different dispersal and recruitment largely account for the contrasting colonization rates, but different effects of the soil legacies of former agricultural land use on plant performance may also play a role. Seven herbaceous forest species were sampled in paired post-agricultural and ancient forest stands to study whether land-use history has an effect on the aboveground nutrient concentrations (N, P and N:P ratios) and biomass of forest herbs and, if so, whether slow and fast colonizing species respond differently. Results showed that P concentrations were significantly affected by former land use with higher concentrations in the post-agricultural stands. N concentrations were unaffected and N:P ratios were significantly higher in the ancient stands. Nutrient concentrations varied considerably among species, but the variation was unrelated to their colonization capacity. Six out of the seven species had higher biomass in the post-agricultural stands relative to the ancient stands, and the degree to which the species increased biomass was positively related to their colonization capacity, i.e., the fast colonizing species showed the strongest increase. Such differential responses to past land use may contribute to the contrasting colonization capacity of forest plants. Land-use history thus affected both the nutrient concentrations and biomass of forest herbs, and only the biomass response was related to colonization capacity

    Przestrzenne i czasowe zróżnicowanie Apoidea w lasach Wielkopolskiego Parku Narodowego

    Get PDF
    Results of the investigations of spatial and temporal differentiations of Apoidea in the forests of Wielkopolski National Park were presented. It was shown that the both forest floor differ with the degree of species differentiation and domination’s structure and total number of bees. In the herbaceous layer of the forests about twice as many spedes were found than in the crowns. Also the Shannon-Weaver’s indices for bees communities of the herbs layer are higher in all three investigated forest ecosystems. The curves of Apoidea numbers in tree crowns and forest floor were similar. The curves of Apoidea numbers in the deciduous forests have one peak in the first days of May. Whereas the curves of Apoidea numbers in the pine forest have multi peak course. It was proved that trees play an important role in feeding chain of bees inhabiting deciduous forests.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions

    Site Factors Influence on Herbaceous Understory Diversity in East Texas Pinus palustris savannas

    Get PDF
    Longleaf pine (Pinus palustris) savannas were once dominant across the southeastern U.S., including East Texas and parts of western and central Louisiana. The diverse understory associated with these historical savannas may occasionally be seen today, but not often in longleaf pine ecosystems. This project aimed to define east Texas site characteristics that are necessary to support these ecosystems with a dense and diverse herbaceous understory with little to no midstory cover. Fifty-nine plots across three study sites were established to evaluate the influence of overstory cover, basal area, aspect, elevation, and slope on the number of plant genera present. Forest structure and site characteristics had significant effects on the number of plant genera found. The number of genera increased with higher elevation and slope; as elevation increased, there was a decline in basal area and overstory cover, leading to a more diverse, understory layer. In order to re-establish and maintain a diverse, herbaceous understory in longleaf pine savannas, sites with more open canopies and on slopes with the most solar exposure should be given priority, particularly when planting desired understory species

    Tree size and herbivory determine below-canopy grass quality and species composition in savannahs

    Get PDF
    Large single-standing trees are rapidly declining in savannahs, ecosystems supporting a high diversity of large herbivorous mammals. Savannah trees are important as they support both a unique flora and fauna. The herbaceous layer in particular responds to the structural and functional properties of a tree. As shrubland expands stem thickening occurs and large trees are replaced by smaller trees. Here we examine whether small trees are as effective in providing advantages for grasses growing beneath their crowns as large trees are. The role of herbivory in this positive tree-grass interaction is also investigated. We assessed soil and grass nutrient content, structural properties, and herbaceous species composition beneath trees of three size classes and under two grazing regimes in a South African savannah. We found that grass leaf content (N and P) beneath the crowns of particularly large (ca. 3. 5 m) and very large trees (ca. 9 m) was as much as 40% greater than the same grass species not growing under a tree canopy, whereas nutrient contents of grasses did not differ beneath small trees
    corecore