30,723 research outputs found
Reducing bubbles in glass coatings improves electrical breakdown strength
Helium reduces bubbles in glass coatings of accelerator grids for ion thrustors. Fusing the coating in a helium atmosphere creates helium bubbles in the glass. In an argon atmosphere, entrapped helium diffuses out of the glass and the bubbles collapse. The resultant coating has a substantially enhanced electrical breakdown strength
Stability of multi-electron bubbles in liquid helium
The stability of multi-electron bubbles in liquid helium is investigated
theoretically. We find that multi-electron bubbles are unstable against fission
whenever the pressure is positive. It is shown that for moving bubbles the
Bernoulli effect can result in a range of pressures over which the bubbles are
stable.Comment: 7 pages, 5 figure
Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure
We have used a Hartree-type electron-helium potential together with a density
functional description of liquid He and He to study the explosion of
electron bubbles submitted to a negative pressure. The critical pressure at
which bubbles explode has been determined as a function of temperature. It has
been found that this critical pressure is very close to the pressure at which
liquid helium becomes globally unstable in the presence of electrons. It is
shown that at high temperatures the capillary model overestimates the critical
pressures. We have checked that a commonly used and rather simple
electron-helium interaction yields results very similar to those obtained using
the more accurate Hartree-type interaction. We have estimated that the
crossover temperature for thermal to quantum nucleation of electron bubbles is
very low, of the order of 6 mK for He.Comment: 22 pages, 9 figure
Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions
We have investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. At energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. We discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formatio
Void Nucleation, Growth, and Coalescence in Irradiated Metals
A novel computational treatment of dense, stiff, coupled reaction rate
equations is introduced to study the nucleation, growth, and possible
coalescence of cavities during neutron irradiation of metals. Radiation damage
is modeled by the creation of Frenkel pair defects and helium impurity atoms. A
multi-dimensional cluster size distribution function allows independent
evolution of the vacancy and helium content of cavities, distinguishing voids
and bubbles. A model with sessile cavities and no cluster-cluster coalescence
can result in a bimodal final cavity size distribution with coexistence of
small, high-pressure bubbles and large, low-pressure voids. A model that
includes unhindered cavity diffusion and coalescence ultimately removes the
small helium bubbles from the system, leaving only large voids. The terminal
void density is also reduced and the incubation period and terminal swelling
rate can be greatly altered by cavity coalescence. Temperature-dependent
trapping of voids/bubbles by precipitates and alterations in void surface
diffusion from adsorbed impurities and internal gas pressure may give rise to
intermediate swelling behavior through their effects on cavity mobility and
coalescence.Comment: 26 pages, 7 figure
Cavitation pressure in liquid helium
Recent experiments have suggested that, at low enough temperature, the
homogeneous nucleation of bubbles occurs in liquid helium near the calculated
spinodal limit. This was done in pure superfluid helium 4 and in pure normal
liquid helium 3. However, in such experiments, where the negative pressure is
produced by focusing an acoustic wave in the bulk liquid, the local amplitude
of the instantaneous pressure or density is not directly measurable. In this
article, we present a series of measurements as a function of the static
pressure in the experimental cell. They allowed us to obtain an upper bound for
the cavitation pressure P_cav (at low temperature, P_cav < -2.4 bar in helium
3, P_cav < -8.0 bar in helium 4). From a more precise study of the acoustic
transducer characteristics, we also obtained a lower bound (at low temperature,
P_cav > -3.0 bar in helium 3, P_cav > - 10.4 bar in helium 4). In this article
we thus present quantitative evidence that cavitation occurs at low temperature
near the calculated spinodal limit (-3.1 bar in helium 3 and -9.5 bar in helium
4). Further information is also obtained on the comparison between the two
helium isotopes. We finally discuss the magnitude of nonlinear effects in the
focusing of a sound wave in liquid helium, where the pressure dependence of the
compressibility is large.Comment: 11 pages, 9 figure
- …
