3,071,804 research outputs found

    Faltings height and N\'eron-Tate height of a theta divisor

    Full text link
    We prove a formula which, given a principally polarized abelian variety (A,λ)(A,\lambda) over the field of algebraic numbers, relates the stable Faltings height of AA with the N\'eron-Tate height of a symmetric theta divisor on AA. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener. We introduce the notion of a tautological model of a principally polarized abelian variety over a complete discretely valued field, and we express the non-archimedean N\'eron functions for a symmetric theta divisor on AA in terms of tautological models and the tropical Riemann theta function.Comment: Referee's remarks taken into account, errors fixed, main result unchanged, added examples dealing with elliptic curve

    Motivic height zeta functions

    Full text link
    Let CC be a projective smooth connected curve over an algebraically closed field of characteristic zero, let FF be its field of functions, let C0C_0 be a dense open subset of CC. Let XX be a projective flat morphism to CC whose generic fiber XFX_F is a smooth equivariant compactification of GG such that D=XFGFD=X_F\setminus G_F is a divisor with strict normal crossings, let UU be a surjective and flat model of GG over C0C_0. We consider a motivic height zeta function, a formal power series with coefficients in a suitable Grothendieck ring of varieties, which takes into account the spaces of sections ss of XCX\to C of given degree with respect to (a model of) the log-anticanonical divisor KXF(D)-K_{X_F}(D) such that s(C0)s(C_0) is contained in UU. We prove that this power series is rational, that its "largest pole" is at L1\mathbf L^{-1}, the inverse of the class of the affine line in the Grothendieck ring, and compute the "order" of this pole as a sum of dimensions of various Clemens complexes at places of CC0 C\setminus C_0. This is a geometric analogue of a result over number fields by the first author and Yuri Tschinkel (Duke Math. J., 2012). The proof relies on the Poisson summation formula in motivic integration, established by Ehud Hrushovski and David Kazhdan (Moscow Math. J, 2009).Comment: 54 pages; revise

    The Height of a Giraffe

    Full text link
    A minor modification of the arguments of Press and Lightman leads to an estimate of the height of the tallest running, breathing organism on a habitable planet as the Bohr radius multiplied by the three-tenths power of the ratio of the electrical to gravitational forces between two protons (rather than the one-quarter power that Press got for the largest animal that would not break in falling over, after making an assumption of unreasonable brittleness). My new estimate gives a height of about 3.6 meters rather than Press's original estimate of about 2.6 cm. It also implies that the number of atoms in the tallest runner is very roughly of the order of the nine-tenths power of the ratio of the electrical to gravitational forces between two protons, which is about 3 x 10^32.Comment: 12 pages, LaTe

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Parametrized Complexity of Expansion Height

    Get PDF
    Deciding whether two simplicial complexes are homotopy equivalent is a fundamental problem in topology, which is famously undecidable. There exists a combinatorial refinement of this concept, called simple-homotopy equivalence: two simplicial complexes are of the same simple-homotopy type if they can be transformed into each other by a sequence of two basic homotopy equivalences, an elementary collapse and its inverse, an elementary expansion. In this article we consider the following related problem: given a 2-dimensional simplicial complex, is there a simple-homotopy equivalence to a 1-dimensional simplicial complex using at most p expansions? We show that the problem, which we call the erasability expansion height, is W[P]-complete in the natural parameter p
    corecore