205,114 research outputs found
On Generating Gravity Waves with Matter and Electromagnetic Waves
If a homogeneous plane light-like shell collides head-on with a homogeneous
plane electromagnetic shock wave having a step-function profile then no
backscattered gravitational waves are produced. We demonstrate, by explicit
calculation, that if the matter is accompanied by a homogeneous plane
electromagnetic shock wave with a step-function profile then backscattered
gravitational waves appear after the collision.Comment: Latex file, 15 pages, accepted for publication in Physical Review
Refraction of dispersive shock waves
We study a dispersive counterpart of the classical gas dynamics problem of
the interaction of a shock wave with a counter-propagating simple rarefaction
wave often referred to as the shock wave refraction. The refraction of a
one-dimensional dispersive shock wave (DSW) due to its head-on collision with
the centred rarefaction wave (RW) is considered in the framework of defocusing
nonlinear Schr\"odinger (NLS) equation. For the integrable cubic nonlinearity
case we present a full asymptotic description of the DSW refraction by
constructing appropriate exact solutions of the Whitham modulation equations in
Riemann invariants. For the NLS equation with saturable nonlinearity, whose
modulation system does not possess Riemann invariants, we take advantage of the
recently developed method for the DSW description in non-integrable dispersive
systems to obtain main physical parameters of the DSW refraction. The key
features of the DSW-RW interaction predicted by our modulation theory analysis
are confirmed by direct numerical solutions of the full dispersive problem.Comment: 45 pages, 23 figures, minor revisio
Collisions of Shock Waves in General Relativity
We show that the Nariai-Bertotti Petrov type D, homogeneous solution of
Einstein's vacuum field equations with a cosmological constant describes the
space-time in the interaction region following the head-on collision of two
homogeneous, plane gravitational shock waves each initially traveling in a
vacuum containing no cosmological constant. A shock wave in this context has a
step function profile in contrast to an impulsive wave which has a delta
function profile. Following the collision two light-like signals, each composed
of a plane, homogeneous light-like shell of matter and a plane, homogeneous
impulsive gravitational wave, travel away from each other and a cosmological
constant is generated in the interaction region. Furthermore a plane,
light-like signal consisting of an electromagnetic shock wave accompanying a
gravitational shock wave is described with the help of two real parameters, one
for each wave. The head-on collision of two such light-like signals is examined
and we show that if a simple algebraic relation is satisfied between the two
pairs of parameters associated with each incoming light-like signal then the
space-time in the interaction region following the collision is a Bertotti
space-time which is a homogeneous solution of the vacuum Einstein-Maxwell field
equations with a cosmological constant.Comment: Latex file, 10 page
Radio Galaxy NGC 1265 unveils the Accretion Shock onto the Perseus Galaxy Cluster
We present a consistent 3D model for the head-tail radio galaxy NGC 1265 that
explains the complex radio morphology and spectrum by a past passage of the
galaxy and radio bubble through a shock wave. Using analytical solutions to the
full Riemann problem and hydrodynamical simulations, we study how this passage
transformed the plasma bubble into a toroidal vortex ring. Adiabatic
compression of the aged electron population causes it to be energized and to
emit low-surface brightness and steep-spectrum radio emission. The large infall
velocity of NGC 1265 and the low Faraday rotation measure values and variance
of the jet strongly argue that this transformation was due to the accretion
shock onto Perseus situated roughly at R_200. Estimating the volume change of
the radio bubble enables inferring a shock Mach number of M =
4.2_{-1.2}^{+0.8}, a density jump of 3.4_{-0.4}^{+0.2}, a temperature jump of
6.3_{-2.7}^{+2.5}, and a pressure jump of 21.5 +/- 10.5 while allowing for
uncertainties in the equation of state of the radio plasma and volume of the
torus. Extrapolating X-ray profiles, we obtain upper limits on the gas
temperature and density in the infalling warm-hot intergalactic medium of kT <
0.4 keV and n < 5e-5 / cm^3. The orientation of the ellipsoidally shaped radio
torus in combination with the direction of the galaxy's head and tail in the
plane of the sky is impossible to reconcile with projection effects. Instead,
this argues for post-shock shear flows that have been caused by curvature in
the shock surface with a characteristic radius of 850 kpc. The energy density
of the shear flow corresponds to a turbulent-to-thermal energy density of 14%.
The shock-injected vorticity might be important in generating and amplifying
magnetic fields in galaxy clusters. Future LOFAR observations of head-tail
galaxies can be complementary probes of accretion shocks onto galaxy clusters.Comment: 14 pages, 4 figures, ApJ, in print; v3: typos corrected to match the
published version; v2: improved presentation, added 2D numerical simulations
and exact solution to the 1D Riemann problem of a shock overrunning a
spherical bubble that gets transformed into a vortex rin
Self-similar ultra-relativistic jetted blast wave
Following a suggestion that a directed relativistic explosion may have a
universal intermediate asymptotic, we derive a self-similar solution for an
ultra-relativistic jetted blast wave. The solution involves three distinct
regions: an approximately paraboloid head where the Lorentz factor
exceeds of its maximal, nose value; a geometrically self-similar,
expanding envelope slightly narrower than a paraboloid; and an axial core in
which the (cylindrically, henceforth) radial flow converges inward towards
the axis. Most () of the energy lies well beyond the leading, head
region. Here, a radial cross section shows a maximal (separating the
core and the envelope), a sign reversal in , and a minimal , at
respectively , , and of the shock radius. The
solution is apparently unique, and approximately agrees with previous
simulations, of different initial conditions, that resolved the head. This
suggests that unlike a spherical relativistic blast wave, our solution is an
attractor, and may thus describe directed blast waves such as in the external
shock phase of a -ray burst.Comment: Revised version (discussion added) accepted by Ap
Effects of Spaceflight on the Modulation of Shock Wave Transmission to the Head During Locomotion
The ability to maintain gaze stability during locomotion requires the normal function and integration of the vestibulo-ocular reflex, vestibulo and cervico-colic reflexes with effective coordination between the trunk and lower limb segments. One hypothesized constraint on the coordination between segments during locomotion is the regulation of energy flow or shock wave transmissions through the body at high impact phases with the support surface. Allowing these excessive transmissions of energy to the head may result in compromised gaze stability during locomotion. The aim of this study was to determine the effects of microgravity adaptation on the transmissibility of shock wave to the head during locomotion. Before and after spaceflight (3-6 months) six subjects walked (6.4 km/h) on a motorized treadmill while fixating their gaze on a centrally located earth-fixed target. Triaxial accelerometers mounted on the shank and the head measured the shock wave transmission through the body during locomotion. During postflight locomotion the peak shock at the shank and the head were significantly reduced, however, the ratio of peak head to shank shock was significantly increased. These results indicate that exposure to spaceflight causes adaptive modifications in the short-latency vestibulospinal head stabilization responses required to compensate for the rapid shocks transmitted to the head during locomotion. This study was supported by NASA
Black Hole Production from High Energy Scattering in AdS/CFT
In this article we show how to set up initial states in SYM
theory that correspond to high energy graviton collisions, leading to black
hole formation in . For this purpose, we study states in the
gauge theory that are dual to graviton wavepackets localized at the center of
, and carrying large angular momentum along the . These states are
created by exciting only the s-wave mode of one of the complex adjoint scalars
of SYM. For a single graviton, the state is 1/2 BPS and one can show that it is
dual to a linearized 1/2 BPS geometry in the bulk. Exploiting this dictionary,
we show how to localize the particle's wavefunciton so that the dual linearized
metric has the form of a Aichelburg-Sexl shock wave. One can then put two such
shock waves into a head-on collision, which is known to produce a trapped
surface. Finally, we discuss the prospect of studying graviton scattering
directly at strong coupling in the gauge theory using a reduced model of matrix
quantum mechanics.Comment: 11 pages, revtex format, no figure
Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula
Recently, in arXiv:1105.2298 [hep-th], we have estimated the energy radiated
in the head-on collision of two equal D-dimensional Aichelburg-Sexl shock
waves, for even D, by solving perturbatively, to first order, the Einstein
equations in the future of the collision. Here, we report on the solution for
the odd D case. After finding the wave forms, we extract the estimated radiated
energy for D=5,7,9 and 11 and unveil a remarkably simple pattern, given the
complexity of the framework: (for all D) the estimated fraction of radiated
energy matches the analytic expression 1/2-1/D, within the numerical error
(less than 0.1%). Both this fit and the apparent horizon bound converge to 1/2
as D goes to infinity.Comment: 3 pages, 3 figures, Accepted in Physical Review Letter
Pairwise wave interactions in ideal polytropic gases
We consider the problem of resolving all pairwise interactions of shock
waves, contact waves, and rarefaction waves in 1-dimensional flow of an ideal
polytropic gas. Resolving an interaction means here to determine the types of
the three outgoing (backward, contact, and forward) waves in the Riemann
problem defined by the extreme left and right states of the two incoming waves,
together with possible vacuum formation. This problem has been considered by
several authors and turns out to be surprisingly involved. For each type of
interaction (head-on, involving a contact, or overtaking) the outcome depends
on the strengths of the incoming waves. In the case of overtaking waves the
type of the reflected wave also depends on the value of the adiabatic constant.
Our analysis provides a complete breakdown and gives the exact outcome of each
interaction.Comment: 39 page
- …
