184,751 research outputs found

    Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion

    Full text link
    Facial landmark detection, head pose estimation, and facial deformation analysis are typical facial behavior analysis tasks in computer vision. The existing methods usually perform each task independently and sequentially, ignoring their interactions. To tackle this problem, we propose a unified framework for simultaneous facial landmark detection, head pose estimation, and facial deformation analysis, and the proposed model is robust to facial occlusion. Following a cascade procedure augmented with model-based head pose estimation, we iteratively update the facial landmark locations, facial occlusion, head pose and facial de- formation until convergence. The experimental results on benchmark databases demonstrate the effectiveness of the proposed method for simultaneous facial landmark detection, head pose and facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition, 201

    Face Alignment Assisted by Head Pose Estimation

    Full text link
    In this paper we propose a supervised initialization scheme for cascaded face alignment based on explicit head pose estimation. We first investigate the failure cases of most state of the art face alignment approaches and observe that these failures often share one common global property, i.e. the head pose variation is usually large. Inspired by this, we propose a deep convolutional network model for reliable and accurate head pose estimation. Instead of using a mean face shape, or randomly selected shapes for cascaded face alignment initialisation, we propose two schemes for generating initialisation: the first one relies on projecting a mean 3D face shape (represented by 3D facial landmarks) onto 2D image under the estimated head pose; the second one searches nearest neighbour shapes from the training set according to head pose distance. By doing so, the initialisation gets closer to the actual shape, which enhances the possibility of convergence and in turn improves the face alignment performance. We demonstrate the proposed method on the benchmark 300W dataset and show very competitive performance in both head pose estimation and face alignment.Comment: Accepted by BMVC201

    Fine-Grained Head Pose Estimation Without Keypoints

    Full text link
    Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detection performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to determine pose by training a multi-loss convolutional neural network on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint binned pose classification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose methods. We open-source our training and testing code as well as release our pre-trained models.Comment: Accepted to Computer Vision and Pattern Recognition Workshops (CVPRW), 2018 IEEE Conference on. IEEE, 201

    Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions

    Get PDF
    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose tu use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available datasets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.Comment: 12 pages, 5 figures, 3 table

    Head Pose Estimation Based on Nonlinear Interpolative Mapping

    Get PDF
    [[abstract]]The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.[[sponsorship]]IEEE Taipei Section; National Science Council; Ministry of Education; Tamkang University; Asia University; Providence University; The University of Aizu; Lanzhou University[[conferencetype]]國際[[conferencetkucampus]]淡水校園[[conferencedate]]20091203~20091205[[booktype]]紙本[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Taipei, Taiwa
    corecore