118,503 research outputs found
NTIRE 2020 Challenge on NonHomogeneous Dehazing
This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of
images (restoration of rich details in hazy image). We focus on the proposed
solutions and their results evaluated on NH-Haze, a novel dataset consisting of
55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor.
NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground
truth images. The nonhomogeneous haze has been produced using a professional
haze generator that imitates the real conditions of haze scenes. 168
participants registered in the challenge and 27 teams competed in the final
testing phase. The proposed solutions gauge the state-of-the-art in image
dehazing.Comment: CVPR Workshops Proceedings 202
Theory and simulation of spectral line broadening by exoplanetary atmospheric haze
Atmospheric haze is the leading candidate for the flattening of expolanetary
spectra, as it's also an important source of opacity in the atmospheres of
solar system planets, satellites, and comets. Exoplanetary transmission
spectra, which carry information about how the planetary atmospheres become
opaque to stellar light in transit, show broad featureless absorption in the
region of wavelengths corresponding to spectral lines of sodium, potassium and
water. We develop a detailed atomistic model, describing interactions of atomic
or molecular radiators with dust and atmospheric haze particulates. This model
incorporates a realistic structure of haze particulates from small nano-size
seed particles up to sub-micron irregularly shaped aggregates, accounting for
both pairwise collisions between the radiator and haze perturbers, and
quasi-static mean field shift of levels in haze environments. This formalism
can explain large flattening of absorption and emission spectra in haze
atmospheres and shows how the radiator - haze particle interaction affects the
absorption spectral shape in the wings of spectral lines and near their
centers. The theory can account for nearly all realistic structure, size and
chemical composition of haze particulates and predict their influence on
absorption and emission spectra in hazy environments. We illustrate the utility
of the method by computing shift and broadening of the emission spectra of the
sodium D line in an argon haze. The simplicity, elegance and generality of the
proposed model should make it amenable to a broad community of users in
astrophysics and chemistry.Comment: 16 pages, 4 figures, submitted to MNRA
Photochemical hazes in sub-Neptunian atmospheres with focus on GJ 1214 b
We study the properties of photochemical hazes in super-Earths/mini-Neptunes
atmospheres with particular focus on GJ1214b. We evaluate photochemical haze
properties at different metallicities between solar and 10000solar.
Within the four orders of magnitude change in metallicity, we find that the
haze precursor mass fluxes change only by a factor of 3. This small
diversity occurs with a non-monotonic manner among the different metallicity
cases, reflecting the interaction of the main atmospheric gases with the
radiation field. Comparison with relative haze yields at different
metallicities from laboratory experiments reveals a qualitative similarity with
our theoretical calculations and highlights the contributions of different gas
precursors. Our haze simulations demonstrate that higher metallicity results
into smaller average particle sizes. Metallicities at and above
100solar with haze formation yields of 10 provide enough haze
opacity to satisfy transit observation at visible wavelengths and obscure
sufficiently the HO molecular absorption features between 1.1 m and
1.7 m. However, only the highest metallicity case considered
(10000solar) brings the simulated spectra into closer agreement with
transit depths at 3.6 m and 4.5 m indicating a high contribution of
CO/CO in GJ1214b's atmosphere. We also evaluate the impact of aggregate
growth in our simulations, in contrast to spherical growth, and find that the
two growth modes provide similar transit signatures (for D=2), but with
different particle size distributions. Finally, we conclude that the simulated
haze particles should have major implications for the atmospheric thermal
structure and for the properties of condensation clouds
Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration
Atmospheric correction over turbid waters can be problematic if atmospheric haze is spatially variable. In this case the retrieval of water quality is hampered by the fact that haze variations could be partly mistaken for variations in suspended sediment concentration (SSC). In this study we propose the suppression of local haze variations while leaving sediment variations intact. This is accomplished by a multispectral data projection (MDP) method based on a linear spectral mixing model, and applied prior to the actual standard atmospheric correction. In this linear model, the hazesediment spectral mixing was simulated by a coupled water-atmosphere radiative transfer (RT) model. As a result, local haze variations were largely suppressed and transformed into an approximately homogenous atmosphere over the MERIS top-of-atmosphere (TOA) radiance scene. The suppression of local haze variations increases the number of satellite images that are still suitable for standard atmospheric correction processing and subsequent water quality analysi
- …
