118,503 research outputs found

    NTIRE 2020 Challenge on NonHomogeneous Dehazing

    Full text link
    This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor. NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground truth images. The nonhomogeneous haze has been produced using a professional haze generator that imitates the real conditions of haze scenes. 168 participants registered in the challenge and 27 teams competed in the final testing phase. The proposed solutions gauge the state-of-the-art in image dehazing.Comment: CVPR Workshops Proceedings 202

    Theory and simulation of spectral line broadening by exoplanetary atmospheric haze

    Full text link
    Atmospheric haze is the leading candidate for the flattening of expolanetary spectra, as it's also an important source of opacity in the atmospheres of solar system planets, satellites, and comets. Exoplanetary transmission spectra, which carry information about how the planetary atmospheres become opaque to stellar light in transit, show broad featureless absorption in the region of wavelengths corresponding to spectral lines of sodium, potassium and water. We develop a detailed atomistic model, describing interactions of atomic or molecular radiators with dust and atmospheric haze particulates. This model incorporates a realistic structure of haze particulates from small nano-size seed particles up to sub-micron irregularly shaped aggregates, accounting for both pairwise collisions between the radiator and haze perturbers, and quasi-static mean field shift of levels in haze environments. This formalism can explain large flattening of absorption and emission spectra in haze atmospheres and shows how the radiator - haze particle interaction affects the absorption spectral shape in the wings of spectral lines and near their centers. The theory can account for nearly all realistic structure, size and chemical composition of haze particulates and predict their influence on absorption and emission spectra in hazy environments. We illustrate the utility of the method by computing shift and broadening of the emission spectra of the sodium D line in an argon haze. The simplicity, elegance and generality of the proposed model should make it amenable to a broad community of users in astrophysics and chemistry.Comment: 16 pages, 4 figures, submitted to MNRA

    Photochemical hazes in sub-Neptunian atmospheres with focus on GJ 1214 b

    Get PDF
    We study the properties of photochemical hazes in super-Earths/mini-Neptunes atmospheres with particular focus on GJ1214b. We evaluate photochemical haze properties at different metallicities between solar and 10000×\timessolar. Within the four orders of magnitude change in metallicity, we find that the haze precursor mass fluxes change only by a factor of \sim3. This small diversity occurs with a non-monotonic manner among the different metallicity cases, reflecting the interaction of the main atmospheric gases with the radiation field. Comparison with relative haze yields at different metallicities from laboratory experiments reveals a qualitative similarity with our theoretical calculations and highlights the contributions of different gas precursors. Our haze simulations demonstrate that higher metallicity results into smaller average particle sizes. Metallicities at and above 100×\timessolar with haze formation yields of \sim10%\% provide enough haze opacity to satisfy transit observation at visible wavelengths and obscure sufficiently the H2_2O molecular absorption features between 1.1 μ\mum and 1.7 μ\mum. However, only the highest metallicity case considered (10000×\timessolar) brings the simulated spectra into closer agreement with transit depths at 3.6 μ\mum and 4.5 μ\mum indicating a high contribution of CO/CO2_2 in GJ1214b's atmosphere. We also evaluate the impact of aggregate growth in our simulations, in contrast to spherical growth, and find that the two growth modes provide similar transit signatures (for Df_f=2), but with different particle size distributions. Finally, we conclude that the simulated haze particles should have major implications for the atmospheric thermal structure and for the properties of condensation clouds

    Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration

    Get PDF
    Atmospheric correction over turbid waters can be problematic if atmospheric haze is spatially variable. In this case the retrieval of water quality is hampered by the fact that haze variations could be partly mistaken for variations in suspended sediment concentration (SSC). In this study we propose the suppression of local haze variations while leaving sediment variations intact. This is accomplished by a multispectral data projection (MDP) method based on a linear spectral mixing model, and applied prior to the actual standard atmospheric correction. In this linear model, the hazesediment spectral mixing was simulated by a coupled water-atmosphere radiative transfer (RT) model. As a result, local haze variations were largely suppressed and transformed into an approximately homogenous atmosphere over the MERIS top-of-atmosphere (TOA) radiance scene. The suppression of local haze variations increases the number of satellite images that are still suitable for standard atmospheric correction processing and subsequent water quality analysi
    corecore