15,247 research outputs found

    Duplication of modules facilitates the evolution of functional specialization

    Get PDF
    The evolution of simulated robots with three different architectures is studied. We compared a non-modular feed forward network, a hardwired modular and a duplication-based modular motor control network. We conclude that both modular architectures outperform the non-modular architecture, both in terms of rate of adaptation as well as the level of adaptation achieved. The main difference between the hardwired and duplication-based modular architectures is that in the latter the modules reached a much higher degree of functional specialization of their motor control units with regard to high level behavioral functions. The hardwired architectures reach the same level of performance, but have a more distributed assignment of functional tasks to the motor control units. We conclude that the mechanism through which functional specialization is achieved is similar to the mechanism proposed for the evolution of duplicated genes. It is found that the duplication of multifunctional modules first leads to a change in the regulation of the module, leading to a differentiation of the functional context in which the module is used. Then the module adapts to the new functional context. After this second step the system is locked into a functionally specialized state. We suggest that functional specialization may be an evolutionary absorption state

    On Computing the Maximum Parsimony Score of a Phylogenetic Network

    Get PDF
    Phylogenetic networks are used to display the relationship of different species whose evolution is not treelike, which is the case, for instance, in the presence of hybridization events or horizontal gene transfers. Tree inference methods such as Maximum Parsimony need to be modified in order to be applicable to networks. In this paper, we discuss two different definitions of Maximum Parsimony on networks, "hardwired" and "softwired", and examine the complexity of computing them given a network topology and a character. By exploiting a link with the problem Multicut, we show that computing the hardwired parsimony score for 2-state characters is polynomial-time solvable, while for characters with more states this problem becomes NP-hard but is still approximable and fixed parameter tractable in the parsimony score. On the other hand we show that, for the softwired definition, obtaining even weak approximation guarantees is already difficult for binary characters and restricted network topologies, and fixed-parameter tractable algorithms in the parsimony score are unlikely. On the positive side we show that computing the softwired parsimony score is fixed-parameter tractable in the level of the network, a natural parameter describing how tangled reticulate activity is in the network. Finally, we show that both the hardwired and softwired parsimony score can be computed efficiently using Integer Linear Programming. The software has been made freely available

    Pedestrian Trajectory Prediction with Structured Memory Hierarchies

    Full text link
    This paper presents a novel framework for human trajectory prediction based on multimodal data (video and radar). Motivated by recent neuroscience discoveries, we propose incorporating a structured memory component in the human trajectory prediction pipeline to capture historical information to improve performance. We introduce structured LSTM cells for modelling the memory content hierarchically, preserving the spatiotemporal structure of the information and enabling us to capture both short-term and long-term context. We demonstrate how this architecture can be extended to integrate salient information from multiple modalities to automatically store and retrieve important information for decision making without any supervision. We evaluate the effectiveness of the proposed models on a novel multimodal dataset that we introduce, consisting of 40,000 pedestrian trajectories, acquired jointly from a radar system and a CCTV camera system installed in a public place. The performance is also evaluated on the publicly available New York Grand Central pedestrian database. In both settings, the proposed models demonstrate their capability to better anticipate future pedestrian motion compared to existing state of the art.Comment: To appear in ECML-PKDD 201

    Predicting dynamics from hardwiring in canonical low-dimensional coupled networks

    Get PDF

    P4-compatible High-level Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs

    Full text link
    Packet parsing is a key step in SDN-aware devices. Packet parsers in SDN networks need to be both reconfigurable and fast, to support the evolving network protocols and the increasing multi-gigabit data rates. The combination of packet processing languages with FPGAs seems to be the perfect match for these requirements. In this work, we develop an open-source FPGA-based configurable architecture for arbitrary packet parsing to be used in SDN networks. We generate low latency and high-speed streaming packet parsers directly from a packet processing program. Our architecture is pipelined and entirely modeled using templated C++ classes. The pipeline layout is derived from a parser graph that corresponds a P4 code after a series of graph transformation rounds. The RTL code is generated from the C++ description using Xilinx Vivado HLS and synthesized with Xilinx Vivado. Our architecture achieves 100 Gb/s data rate in a Xilinx Virtex-7 FPGA while reducing the latency by 45% and the LUT usage by 40% compared to the state-of-the-art.Comment: Accepted for publication at the 26th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays February 25 - 27, 2018 Monterey Marriott Hotel, Monterey, California, 7 pages, 7 figures, 1 tabl

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU
    corecore