483,986 research outputs found
A new Definition and Classification of Physical Unclonable Functions
A new definition of "Physical Unclonable Functions" (PUFs), the first one
that fully captures its intuitive idea among experts, is presented. A PUF is an
information-storage system with a security mechanism that is
1. meant to impede the duplication of a precisely described
storage-functionality in another, separate system and
2. remains effective against an attacker with temporary access to the whole
original system.
A novel classification scheme of the security objectives and mechanisms of
PUFs is proposed and its usefulness to aid future research and security
evaluation is demonstrated. One class of PUF security mechanisms that prevents
an attacker to apply all addresses at which secrets are stored in the
information-storage system, is shown to be closely analogous to cryptographic
encryption. Its development marks the dawn of a new fundamental primitive of
hardware-security engineering: cryptostorage. These results firmly establish
PUFs as a fundamental concept of hardware security.Comment: 6 pages, 3 figures; Proceedings "CS2 '15 Proceedings of the Second
Workshop on Cryptography and Security in Computing Systems", Amsterdam, 2015,
ACM Digital Librar
Hardware-based Security for Virtual Trusted Platform Modules
Virtual Trusted Platform modules (TPMs) were proposed as a software-based
alternative to the hardware-based TPMs to allow the use of their cryptographic
functionalities in scenarios where multiple TPMs are required in a single
platform, such as in virtualized environments. However, virtualizing TPMs,
especially virutalizing the Platform Configuration Registers (PCRs), strikes
against one of the core principles of Trusted Computing, namely the need for a
hardware-based root of trust. In this paper we show how strength of
hardware-based security can be gained in virtual PCRs by binding them to their
corresponding hardware PCRs. We propose two approaches for such a binding. For
this purpose, the first variant uses binary hash trees, whereas the other
variant uses incremental hashing. In addition, we present an FPGA-based
implementation of both variants and evaluate their performance
Secure pseudo-random linear binary sequences generators based on arithmetic polynoms
We present a new approach to constructing of pseudo-random binary sequences
(PRS) generators for the purpose of cryptographic data protection, secured from
the perpetrator's attacks, caused by generation of masses of hardware errors
and faults. The new method is based on use of linear polynomial arithmetic for
the realization of systems of boolean characteristic functions of PRS'
generators. "Arithmetizatio" of systems of logic formulas has allowed to apply
mathematical apparatus of residue systems for multisequencing of the process of
PRS generation and organizing control of computing errors, caused by hardware
faults. This has guaranteed high security of PRS generator's functioning and,
consequently, security of tools for cryptographic data protection based on
those PRSs
Acoustic Integrity Codes: Secure Device Pairing Using Short-Range Acoustic Communication
Secure Device Pairing (SDP) relies on an out-of-band channel to authenticate
devices. This requires a common hardware interface, which limits the use of
existing SDP systems. We propose to use short-range acoustic communication for
the initial pairing. Audio hardware is commonly available on existing
off-the-shelf devices and can be accessed from user space without requiring
firmware or hardware modifications. We improve upon previous approaches by
designing Acoustic Integrity Codes (AICs): a modulation scheme that provides
message authentication on the acoustic physical layer. We analyze their
security and demonstrate that we can defend against signal cancellation attacks
by designing signals with low autocorrelation. Our system can detect
overshadowing attacks using a ternary decision function with a threshold. In
our evaluation of this SDP scheme's security and robustness, we achieve a bit
error ratio below 0.1% for a net bit rate of 100 bps with a signal-to-noise
ratio (SNR) of 14 dB. Using our open-source proof-of-concept implementation on
Android smartphones, we demonstrate pairing between different smartphone
models.Comment: 11 pages, 11 figures. Published at ACM WiSec 2020 (13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks). Updated
reference
- …
