1,901 research outputs found
Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers for spinal muscular atrophy
BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations in the survival motor neuron 1 (SMN1) gene. Recent breakthroughs in preclinical research have highlighted several potential novel therapies for SMA, increasing the need for robust and sensitive clinical trial platforms for evaluating their effectiveness in human patient cohorts. Given that most clinical trials for SMA are likely to involve young children, there is a need for validated molecular biomarkers to assist with monitoring disease progression and establishing the effectiveness of therapies being tested. Proteomics technologies have recently been highlighted as a potentially powerful tool for such biomarker discovery. METHODS: We utilized label-free proteomics to identify individual proteins in pathologically-affected skeletal muscle from SMA mice that report directly on disease status. Quantitative fluorescent western blotting was then used to assess whether protein biomarkers were robustly changed in muscle, skin and blood from another mouse model of SMA, as well as in a small cohort of human SMA patient muscle biopsies. RESULTS: By comparing the protein composition of skeletal muscle in SMA mice at a pre-symptomatic time-point with the muscle proteome at a late-symptomatic time-point we identified increased expression of both Calreticulin and GRP75/Mortalin as robust indicators of disease progression in SMA mice. We report that these protein biomarkers were consistently modified in different mouse models of SMA, as well as across multiple skeletal muscles, and were also measurable in skin biopsies. Furthermore, Calreticulin and GRP75/Mortalin were measurable in muscle biopsy samples from human SMA patients. CONCLUSIONS: We conclude that label-free proteomics technology provides a powerful platform for biomarker identification in SMA, revealing Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers capable of reporting on disease progression in samples of muscle and skin
Aging cellular networks: chaperones as major participants
We increasingly rely on the network approach to understand the complexity of
cellular functions. Chaperones (heat shock proteins) are key "networkers",
which have among their functions to sequester and repair damaged protein. In
order to link the network approach and chaperones with the aging process, we
first summarize the properties of aging networks suggesting a "weak link theory
of aging". This theory suggests that age-related random damage primarily
affects the overwhelming majority of the low affinity, transient interactions
(weak links) in cellular networks leading to increased noise, destabilization
and diversity. These processes may be further amplified by age-specific network
remodelling and by the sequestration of weakly linked cellular proteins to
protein aggregates of aging cells. Chaperones are weakly linked hubs [i.e.,
network elements with a large number of connections] and inter-modular bridge
elements of protein-protein interaction, signalling and mitochondrial networks.
As aging proceeds, the increased overload of damaged proteins is an especially
important element contributing to cellular disintegration and destabilization.
Additionally, chaperone overload may contribute to the increase of "noise" in
aging cells, which leads to an increased stochastic resonance resulting in a
deficient discrimination between signals and noise. Chaperone- and other
multi-target therapies, which restore the missing weak links in aging cellular
networks, may emerge as important anti-aging interventions.Comment: 7 pages, 4 figure
ER-Mitochondria contact sites : a new regulator of cellular calcium flux comes into play
Endoplasmic reticulum (ER)-mitochondria membrane contacts are hotspots for calcium signaling. In this issue, Raturi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512077) show that the thioredoxin TMX1 inhibits the calcium pump SERCA2b at ER-mitochondria contact sites, thereby affecting ER-mitochondrial calcium transfer and mitochondrial bioenergetics
One protein, different cell fate:the differential outcome of depleting GRP75 during oxidative stress in neurons
Resveratrol Protects DAergic PC12 Cells from High Glucose-Induced Oxidative Stress and Apoptosis: Effect on p53 and GRP75 Localization
Resveratrol (RESV), a polyphenolic natural compound, has long been acknowledged to have cardioprotective and antiinflammatory actions. Evidence suggests that RESV has antioxidant properties that reduce the formation of reactive oxygen species leading to oxidative stress and apoptotic death of dopaminergic (DAergic) neurons in Parkinson’s disease (PD). Recent literature has recognized hyperglycemia as a cause of oxidative stress reported to be harmful for the nervous system. In this context, our study aimed (a) to evaluate the effect of RESV against high glucose (HG)-induced oxidative stress in DAergic neurons, (b) to study the antiapoptotic properties of RESV in HG condition, and c) to analyze RESV’s ability to modulate p53 and GRP75, a p53 inactivator found to be under expressed in postmortem PD brains. Our results suggest that RESV protects DAergic neurons against HG-induced oxidative stress by diminishing cellular levels of superoxide anion. Moreover, RESV significantly reduces HG-induced apoptosis in DAergic cells by modulating DNA fragmentation and the expression of several genes implicated in the apoptotic cascade, such as Bax, Bcl-2, cleaved caspase-3, and cleaved PARP-1. RESV also prevents the pro-apoptotic increase of p53 in the nucleus induced by HG. Such data strengthens the correlation between hyperglycemia and neurodegeneration, while providing new insight on the high occurrence of PD in patients with diabetes. This study enlightens potent neuroprotective roles for RESV that should be considered as a nutritional recommendation for preventive and/or complementary therapies in controlling neurodegenerative complications in diabetes
The Interface Between ER and Mitochondria: Molecular Compositions and Functions
Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of Ca2+ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as Ca2+ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, Ca2+ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases
Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria
BACKGROUND: Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. METHODS: MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. RESULTS: MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; P<0.001). Induced MRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. CONCLUSION: Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success
Dietary supplementation with essential amino acids boosts the beneficial effects of rosuvastatin on mouse kidney
Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons
Recent studies have begun to focus on the signals that regulate axonal protein synthesis and the functional significance of localized protein synthesis. However, identification of proteins that are synthesized in mammalian axons has been mainly based on predictions. Here,weusedaxonspurifiedfromculturesofinjury-conditionedadultdorsalrootganglion(DRG)neuronsandproteomicsmethodology to identify axonally synthesized proteins. Reverse transcription (RT)-PCR from axonal preparations was used to confirm that the mRNA for each identified protein extended into the DRG axons. Proteins and the encoding mRNAs for the cytoskeletal proteins �-actin, peripherin, vimentin, �-tropomyosin 3, and cofilin 1 were present in the axonal preparations. In addition to the cytoskeletal elements, several heat shock proteins (HSP27, HSP60, HSP70, grp75, �B crystallin), resident endoplasmic reticulum (ER) proteins (calreticulin, grp78/BiP, ERp29), proteins associated with neurodegenerative diseases (ubiquitin C-terminal hydrolase L1, rat ortholog of human DJ-1/Park7, �-synuclein, superoxide dismutase 1), anti-oxidant proteins (peroxiredoxins 1 and 6), and metabolic proteins (e.g., phosphoglycerate kinase 1 (PGK 1), � enolase, aldolase C/Zebrin II) were included among the axonally synthesized proteins. Detection of the mRNAs encoding each of the axonally synthesized proteins identified by mass spectrometry in the axonal compartment indicates that th
A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice
Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases
- …
