20,079 research outputs found

    The Degrees of Freedom of the Group Lasso

    Full text link
    This paper studies the sensitivity to the observations of the block/group Lasso solution to an overdetermined linear regression model. Such a regularization is known to promote sparsity patterns structured as nonoverlapping groups of coefficients. Our main contribution provides a local parameterization of the solution with respect to the observations. As a byproduct, we give an unbiased estimate of the degrees of freedom of the group Lasso. Among other applications of such results, one can choose in a principled and objective way the regularization parameter of the Lasso through model selection criteria

    Efficient First Order Methods for Linear Composite Regularizers

    Get PDF
    A wide class of regularization problems in machine learning and statistics employ a regularization term which is obtained by composing a simple convex function \omega with a linear transformation. This setting includes Group Lasso methods, the Fused Lasso and other total variation methods, multi-task learning methods and many more. In this paper, we present a general approach for computing the proximity operator of this class of regularizers, under the assumption that the proximity operator of the function \omega is known in advance. Our approach builds on a recent line of research on optimal first order optimization methods and uses fixed point iterations for numerically computing the proximity operator. It is more general than current approaches and, as we show with numerical simulations, computationally more efficient than available first order methods which do not achieve the optimal rate. In particular, our method outperforms state of the art O(1/T) methods for overlapping Group Lasso and matches optimal O(1/T^2) methods for the Fused Lasso and tree structured Group Lasso.Comment: 19 pages, 8 figure
    corecore