42,523 research outputs found

    Green function for hyperbolic media

    Get PDF
    We revisit the problem of the electromagnetic Green function for homogeneous hyperbolic media, where longitudinal and transverse components of the dielectric permittivity tensor have different signs. We analyze the dipole emission patterns for both dipole orientations with respect to the symmetry axis and for different signs of dielectric constants, and show that the emission pattern is highly anisotropic and has a characteristic cross-like shape: the waves are propagating within a certain cone and are evanescent outside this cone. We demonstrate the coexistence of the cone-like pattern due to emission of the extraordinary TM-polarized waves and elliptical pattern due to emission of ordinary TE-polarized waves. We find a singular complex term in the Green function, proportional to the δ\delta-function and governing the photonic density of states and Purcell effect in hyperbolic media.Comment: 10 pages, 7 figure

    Worldline Green Functions for Arbitrary Feynman Diagrams

    Get PDF
    We propose a general method to obtain the scalar worldline Green function on an arbitrary 1D topological space, with which the first-quantized method of evaluating 1-loop Feynman diagrams can be generalized to calculate arbitrary ones. The electric analog of the worldline Green function problem is found and a compact expression for the worldline Green function is given, which has similar structure to the 2D bosonic Green function of the closed bosonic string.Comment: 20 pages, 6 figures; v2: typos corrected, references adde

    On gauge-invariant Green function in 2+1 dimensional QED

    Full text link
    Both the gauge-invariant fermion Green function and gauge-dependent conventional Green function in 2+1 2+1 dimensional QED are studied in the large N N limit. In temporal gauge, the infra-red divergence of gauge-dependent Green function is found to be regulariable, the anomalous dimension is found to be η=643π2N \eta= \frac{64}{3 \pi^{2} N} . This anomalous dimension was argued to be the same as that of gauge-invariant Green function. However, in Coulomb gauge, the infra-red divergence of the gauge-dependent Green function is found to be un-regulariable, anomalous dimension is even not defined, but the infra-red divergence is shown to be cancelled in any gauge-invariant physical quantities. The gauge-invariant Green function is also studied directly in Lorentz covariant gauge and the anomalous dimension is found to be the same as that calculated in temporal gauge.Comment: 8 pages, 6 figures, to appear in Phys. Rev.

    General form of the full electromagnetic Green function in materials physics

    Full text link
    In this article, we present the general form of the full electromagnetic Green function which is suitable for the application in bulk materials physics. In particular, we show how the seven adjustable parameter functions of the free Green function translate into seven corresponding parameter functions of the full Green function. Furthermore, for both the fundamental response tensor and the electromagnetic Green function, we discuss the reduction of the Dyson equation on the four-dimensional Minkowski space to an equivalent, three-dimensional Cartesian Dyson equation.Comment: consistent with published version in Chin. J. Phys. (2019

    Thermalization of Green functions and quasinormal modes

    Full text link
    We develop a new method to study the thermalization of time dependent retarded Green function in conformal field theories holographically dual to thin shell AdS Vaidya space times. The method relies on using the information of all time derivatives of the Green function at the shell and then evolving it for later times. The time derivatives of the Green function at the shell is given in terms of a recursion formula. Using this method we obtain analytic results for short time thermalization of the Green function. We show that the late time behaviour of the Green function is determined by the first quasinormal mode. We then implement the method numerically. As applications of this method we study the thermalization of the retarded time dependent Green function corresponding to a minimally coupled scalar in the AdS3 and AdS5 thin Vaidya shells. We see that as expected the late time behaviour is determined by the first quasinormal mode. We apply the method to study the late time behaviour of the shear vector mode in AdS5 Vaidya shell. At small momentum the corresponding time dependent Green function is expected to relax to equilibrium by the shear hydrodynamic mode. Using this we obtain the universal ratio of the shear viscosity to entropy density from a time dependent process.Comment: Typos corrected, references added, 38 pages. 9 figures. Mathematica files included in source file

    Semiclassical Green Function in Mixed Spaces

    Get PDF
    A explicit formula on semiclassical Green functions in mixed position and momentum spaces is given, which is based on Maslov's multi-dimensional semiclassical theory. The general formula includes both coordinate and momentum representations of Green functions as two special cases of the form.Comment: 8 pages, typeset by Scientific Wor
    corecore