1,699,775 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Equivalence of the filament and overlap graphs of subtrees of limited trees

    Get PDF
    The overlap graphs of subtrees of a tree are equivalent to subtree filament graphs, the overlap graphs of subtrees of a star are cocomparability graphs, and the overlap graphs of subtrees of a caterpillar are interval filament graphs. In this paper, we show the equivalence of many more classes of subtree overlap and subtree filament graphs, and equate them to classes of complements of cochordal-mixed graphs. Our results generalize the previously known results mentioned above

    Random graphs from a weighted minor-closed class

    Full text link
    There has been much recent interest in random graphs sampled uniformly from the n-vertex graphs in a suitable minor-closed class, such as the class of all planar graphs. Here we use combinatorial and probabilistic methods to investigate a more general model. We consider random graphs from a `well-behaved' class of graphs: examples of such classes include all minor-closed classes of graphs with 2-connected excluded minors (such as forests, series-parallel graphs and planar graphs), the class of graphs embeddable on any given surface, and the class of graphs with at most k vertex-disjoint cycles. Also, we give weights to edges and components to specify probabilities, so that our random graphs correspond to the random cluster model, appropriately conditioned. We find that earlier results extend naturally in both directions, to general well-behaved classes of graphs, and to the weighted framework, for example results concerning the probability of a random graph being connected; and we also give results on the 2-core which are new even for the uniform (unweighted) case.Comment: 46 page
    corecore