1,699,775 research outputs found
Defective and Clustered Graph Colouring
Consider the following two ways to colour the vertices of a graph where the
requirement that adjacent vertices get distinct colours is relaxed. A colouring
has "defect" if each monochromatic component has maximum degree at most
. A colouring has "clustering" if each monochromatic component has at
most vertices. This paper surveys research on these types of colourings,
where the first priority is to minimise the number of colours, with small
defect or small clustering as a secondary goal. List colouring variants are
also considered. The following graph classes are studied: outerplanar graphs,
planar graphs, graphs embeddable in surfaces, graphs with given maximum degree,
graphs with given maximum average degree, graphs excluding a given subgraph,
graphs with linear crossing number, linklessly or knotlessly embeddable graphs,
graphs with given Colin de Verdi\`ere parameter, graphs with given
circumference, graphs excluding a fixed graph as an immersion, graphs with
given thickness, graphs with given stack- or queue-number, graphs excluding
as a minor, graphs excluding as a minor, and graphs excluding
an arbitrary graph as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in
the Electronic Journal of Combinatoric
Equivalence of the filament and overlap graphs of subtrees of limited trees
The overlap graphs of subtrees of a tree are equivalent to subtree filament
graphs, the overlap graphs of subtrees of a star are cocomparability graphs,
and the overlap graphs of subtrees of a caterpillar are interval filament
graphs. In this paper, we show the equivalence of many more classes of subtree
overlap and subtree filament graphs, and equate them to classes of complements
of cochordal-mixed graphs. Our results generalize the previously known results
mentioned above
Random graphs from a weighted minor-closed class
There has been much recent interest in random graphs sampled uniformly from
the n-vertex graphs in a suitable minor-closed class, such as the class of all
planar graphs. Here we use combinatorial and probabilistic methods to
investigate a more general model. We consider random graphs from a
`well-behaved' class of graphs: examples of such classes include all
minor-closed classes of graphs with 2-connected excluded minors (such as
forests, series-parallel graphs and planar graphs), the class of graphs
embeddable on any given surface, and the class of graphs with at most k
vertex-disjoint cycles. Also, we give weights to edges and components to
specify probabilities, so that our random graphs correspond to the random
cluster model, appropriately conditioned.
We find that earlier results extend naturally in both directions, to general
well-behaved classes of graphs, and to the weighted framework, for example
results concerning the probability of a random graph being connected; and we
also give results on the 2-core which are new even for the uniform (unweighted)
case.Comment: 46 page
- …
