83,577 research outputs found
Separation and Electrical Properties of Self-Organized Graphene/Graphite Layers
Intrinsic layered structure of graphite is the source of ongoing and
expanding search of ways of obtaining low-cost and promising graphite thin
layers. We report on a novel method of obtaining and separating rubbed graphite
sheets by using water soluble NaCl substrate. The electrical behavior of sheets
was characterized by current-voltage measurements. An in-plane electrical
unisotropy depending on rubbing direction is discovered. Optical microscopy
observations combined with discovered non-linear electrical behavior revealed
that friction leads to the formation of sheet makeup which contain an optically
transparent lamina of self-organized few-layer graphene.Comment: 5 pages, 4 figure
Isotropic pyrolytic carbons
Depositing carbon on high-temperature substrate that is kept in motion by vibration produces isotropic pyrolytic graphite or carbon without using fluidized beds
Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures
We report on suspended single-layer graphene deposition by a
transfer-printing approach based on polydimethylsiloxane stamps. The transfer
printing method allows the exfoliation of graphite flakes from a bulk graphite
sample and their residue-free deposition on a silicon dioxide substrate. This
deposition system creates a blistered graphene surface due to strain induced by
the transfer process itself. Single-layer-graphene deposition and its
"blistering" on the substrate are demonstrated by a combination of Raman
spectroscopy, scanning electron microscopy and atomic-force microscopy
measurements. Finally, we demonstrate that blister-like suspended graphene are
self-supporting single-layer structures and can be flattened by employing a
spatially-resolved direct-lithography technique based on electron-beam induced
etching.Comment: 17 pages, 5 figure
Graphite cloth facilitates vacuum evaporation of silicon monoxide
Woven graphite cloth facilitates the vacuum deposition of thin films of silicon monoxide on substrate surfaces. The cloth serves both as a container and electric heating element for the silicon monoxide. It minimizes and prevents the silicon monoxide particle ejection, provides uniform heat distribution, and cools rapidly by radiation
A micro-magneto-Raman scattering study of graphene on a bulk graphite substrate
We report on a magneto-Raman scattering study of graphene flakes located on
the surface of a bulk graphite substrate. By spatially mapping the Raman
scattering response of the surface of bulk graphite with an applied magnetic
field, we pinpoint specific locations which show the electronic excitation
spectrum of graphene. We present the characteristic Raman scattering signatures
of these specific locations. We show that such flakes can be superimposed with
another flake and still exhibit a graphene-like excitation spectrum.
Two different excitation laser energies (514.5 and 720 nm) are used to
investigate the excitation wavelength dependence of the electronic Raman
scattering signal.Comment: 6 pages, 5 figure
Electrochemical synthesis of hydrogen with depolarization of the anodic process
A new active composite coating for graphite gas diffusion electrode for hybrid sulfur cycle was proposed. The kinetics of oxidation of SO₂ were studied on porous graphite anodes with different catalytic coatings. It was shown that the most efficient composite coating is based on activated carbon and platinum supported on graphite gas diffusion substrate. The voltage drop in the laboratory electrochemical cell was 1.3 V at a current density of 1000 A·m⁻². This corresponds to a specific consumption of 3.1 kWh electric energy per 1 m³ of hydrogen
Bromination of Graphene and Graphite
We present a density functional theory study of low density bromination of
graphene and graphite, finding significantly different behaviour in these two
materials. On graphene we find a new Br2 form where the molecule sits
perpendicular to the graphene sheet with an extremely strong molecular dipole.
The resultant Br+-Br- has an empty pz-orbital located in the graphene
electronic pi-cloud. Bromination opens a small (86meV) band gap and strongly
dopes the graphene. In contrast, in graphite we find Br2 is most stable
parallel to the carbon layers with a slightly weaker associated charge transfer
and no molecular dipole. We identify a minimum stable Br2 concentration in
graphite, finding low density bromination to be endothermic. Graphene may be a
useful substrate for stabilising normally unstable transient molecular states
Examination of silver-graphite lithographically printed resistive strain sensors
This paper reports the design and manufacture of three differing types of resistive strain sensitive structures fabricated using the Conductive Lithographic Film (CLF) printing process. The structures, utilising two inks prepared with silver and graphite particulates as the conductive phase, have been analysed to determine electrical and mechanical properties with respect to strain, temperature and humidity when deposited on four alternative substrate materials (GlossArt, PolyArt, Teslin and Melinex)
- …
