81,195 research outputs found

    On Consistency of Graph-based Semi-supervised Learning

    Full text link
    Graph-based semi-supervised learning is one of the most popular methods in machine learning. Some of its theoretical properties such as bounds for the generalization error and the convergence of the graph Laplacian regularizer have been studied in computer science and statistics literatures. However, a fundamental statistical property, the consistency of the estimator from this method has not been proved. In this article, we study the consistency problem under a non-parametric framework. We prove the consistency of graph-based learning in the case that the estimated scores are enforced to be equal to the observed responses for the labeled data. The sample sizes of both labeled and unlabeled data are allowed to grow in this result. When the estimated scores are not required to be equal to the observed responses, a tuning parameter is used to balance the loss function and the graph Laplacian regularizer. We give a counterexample demonstrating that the estimator for this case can be inconsistent. The theoretical findings are supported by numerical studies.Comment: This paper is accepted by 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS

    Graph Laplacian for Semi-Supervised Learning

    Full text link
    Semi-supervised learning is highly useful in common scenarios where labeled data is scarce but unlabeled data is abundant. The graph (or nonlocal) Laplacian is a fundamental smoothing operator for solving various learning tasks. For unsupervised clustering, a spectral embedding is often used, based on graph-Laplacian eigenvectors. For semi-supervised problems, the common approach is to solve a constrained optimization problem, regularized by a Dirichlet energy, based on the graph-Laplacian. However, as supervision decreases, Dirichlet optimization becomes suboptimal. We therefore would like to obtain a smooth transition between unsupervised clustering and low-supervised graph-based classification. In this paper, we propose a new type of graph-Laplacian which is adapted for Semi-Supervised Learning (SSL) problems. It is based on both density and contrastive measures and allows the encoding of the labeled data directly in the operator. Thus, we can perform successfully semi-supervised learning using spectral clustering. The benefits of our approach are illustrated for several SSL problems.Comment: 12 pages, 6 figure

    Graph-based Semi-Supervised & Active Learning for Edge Flows

    Full text link
    We present a graph-based semi-supervised learning (SSL) method for learning edge flows defined on a graph. Specifically, given flow measurements on a subset of edges, we want to predict the flows on the remaining edges. To this end, we develop a computational framework that imposes certain constraints on the overall flows, such as (approximate) flow conservation. These constraints render our approach different from classical graph-based SSL for vertex labels, which posits that tightly connected nodes share similar labels and leverages the graph structure accordingly to extrapolate from a few vertex labels to the unlabeled vertices. We derive bounds for our method's reconstruction error and demonstrate its strong performance on synthetic and real-world flow networks from transportation, physical infrastructure, and the Web. Furthermore, we provide two active learning algorithms for selecting informative edges on which to measure flow, which has applications for optimal sensor deployment. The first strategy selects edges to minimize the reconstruction error bound and works well on flows that are approximately divergence-free. The second approach clusters the graph and selects bottleneck edges that cross cluster-boundaries, which works well on flows with global trends
    • …
    corecore