767 research outputs found

    Distributed Estimation of Graph Spectrum

    Full text link
    In this paper, we develop a two-stage distributed algorithm that enables nodes in a graph to cooperatively estimate the spectrum of a matrix WW associated with the graph, which includes the adjacency and Laplacian matrices as special cases. In the first stage, the algorithm uses a discrete-time linear iteration and the Cayley-Hamilton theorem to convert the problem into one of solving a set of linear equations, where each equation is known to a node. In the second stage, if the nodes happen to know that WW is cyclic, the algorithm uses a Lyapunov approach to asymptotically solve the equations with an exponential rate of convergence. If they do not know whether WW is cyclic, the algorithm uses a random perturbation approach and a structural controllability result to approximately solve the equations with an error that can be made small. Finally, we provide simulation results that illustrate the algorithm.Comment: 15 pages, 2 figure

    Finite pseudo orbit expansions for spectral quantities of quantum graphs

    Full text link
    We investigate spectral quantities of quantum graphs by expanding them as sums over pseudo orbits, sets of periodic orbits. Only a finite collection of pseudo orbits which are irreducible and where the total number of bonds is less than or equal to the number of bonds of the graph appear, analogous to a cut off at half the Heisenberg time. The calculation simplifies previous approaches to pseudo orbit expansions on graphs. We formulate coefficients of the characteristic polynomial and derive a secular equation in terms of the irreducible pseudo orbits. From the secular equation, whose roots provide the graph spectrum, the zeta function is derived using the argument principle. The spectral zeta function enables quantities, such as the spectral determinant and vacuum energy, to be obtained directly as finite expansions over the set of short irreducible pseudo orbits.Comment: 23 pages, 4 figures, typos corrected, references added, vacuum energy calculation expande

    Convex Graph Invariant Relaxations For Graph Edit Distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry.Comment: 27 pages, 7 figure
    • …
    corecore