1,290,692 research outputs found

    Relational Graph Models at Work

    Full text link
    We study the relational graph models that constitute a natural subclass of relational models of lambda-calculus. We prove that among the lambda-theories induced by such models there exists a minimal one, and that the corresponding relational graph model is very natural and easy to construct. We then study relational graph models that are fully abstract, in the sense that they capture some observational equivalence between lambda-terms. We focus on the two main observational equivalences in the lambda-calculus, the theory H+ generated by taking as observables the beta-normal forms, and H* generated by considering as observables the head normal forms. On the one hand we introduce a notion of lambda-K\"onig model and prove that a relational graph model is fully abstract for H+ if and only if it is extensional and lambda-K\"onig. On the other hand we show that the dual notion of hyperimmune model, together with extensionality, captures the full abstraction for H*

    Random Graph Models with Hidden Color

    Full text link
    We demonstrate how to generalize two of the most well-known random graph models, the classic random graph, and random graphs with a given degree distribution, by the introduction of hidden variables in the form of extra degrees of freedom, color, applied to vertices or stubs (half-edges). The color is assumed unobservable, but is allowed to affect edge probabilities. This serves as a convenient method to define very general classes of models within a common unifying formalism, and allowing for a non-trivial edge correlation structure.Comment: 17 pages, 2 figures; contrib. to the Workshop on Random Geometry in Krakow, May 200

    Chain graph models of multivariate regression type for categorical data

    Full text link
    We discuss a class of chain graph models for categorical variables defined by what we call a multivariate regression chain graph Markov property. First, the set of local independencies of these models is shown to be Markov equivalent to those of a chain graph model recently defined in the literature. Next we provide a parametrization based on a sequence of generalized linear models with a multivariate logistic link function that captures all independence constraints in any chain graph model of this kind.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ300 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Does Treewidth Help in Modal Satisfiability?

    Full text link
    Many tractable algorithms for solving the Constraint Satisfaction Problem (CSP) have been developed using the notion of the treewidth of some graph derived from the input CSP instance. In particular, the incidence graph of the CSP instance is one such graph. We introduce the notion of an incidence graph for modal logic formulae in a certain normal form. We investigate the parameterized complexity of modal satisfiability with the modal depth of the formula and the treewidth of the incidence graph as parameters. For various combinations of Euclidean, reflexive, symmetric and transitive models, we show either that modal satisfiability is FPT, or that it is W[1]-hard. In particular, modal satisfiability in general models is FPT, while it is W[1]-hard in transitive models. As might be expected, modal satisfiability in transitive and Euclidean models is FPT.Comment: Full version of the paper appearing in MFCS 2010. Change from v1: improved section 5 to avoid exponential blow-up in formula siz
    corecore