139,467 research outputs found

    Extrema of graph eigenvalues

    Full text link
    In 1993 Hong asked what are the best bounds on the kk'th largest eigenvalue λk(G)\lambda_{k}(G) of a graph GG of order nn. This challenging question has never been tackled for any 2<k<n2<k<n. In the present paper tight bounds are obtained for all k>2,k>2, and even tighter bounds are obtained for the kk'th largest singular value λk(G).\lambda_{k}^{\ast}(G). Some of these bounds are based on Taylor's strongly regular graphs, and other on a method of Kharaghani for constructing Hadamard matrices. The same kind of constructions are applied to other open problems, like Nordhaus-Gaddum problems of the kind: How large can λk(G)+λk(Gˉ)\lambda_{k}(G)+\lambda_{k}(\bar{G}) be?? These constructions are successful also in another open question: How large can the Ky Fan norm λ1(G)+...+λk(G)\lambda_{1}^{\ast}(G)+...+\lambda_{k}^{\ast }(G) be ?? Ky Fan norms of graphs generalize the concept of graph energy, so this question generalizes the problem for maximum energy graphs. In the final section, several results and problems are restated for (1,1)(-1,1)-matrices, which seem to provide a more natural ground for such research than graphs. Many of the results in the paper are paired with open questions and problems for further study.Comment: 32 page

    Network Density of States

    Full text link
    Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of graphs through the overall distribution of eigenvalues - the spectral density - is largely limited to simple random graph models. The interior of the spectrum of real-world graphs remains largely unexplored, difficult to compute and to interpret. In this paper, we delve into the heart of spectral densities of real-world graphs. We borrow tools developed in condensed matter physics, and add novel adaptations to handle the spectral signatures of common graph motifs. The resulting methods are highly efficient, as we illustrate by computing spectral densities for graphs with over a billion edges on a single compute node. Beyond providing visually compelling fingerprints of graphs, we show how the estimation of spectral densities facilitates the computation of many common centrality measures, and use spectral densities to estimate meaningful information about graph structure that cannot be inferred from the extremal eigenpairs alone.Comment: 10 pages, 7 figure

    Graph Laplacians and Stabilization of Vehicle Formations

    Get PDF
    Control of vehicle formations has emerged as a topic of significant interest to the controls community. In this paper, we merge tools from graph theory and control theory to derive stability criteria for formation stabilization. The interconnection between vehicles (i.e., which vehicles are sensed by other vehicles) is modeled as a graph, and the eigenvalues of the Laplacian matrix of the graph are used in stating a Nyquist-like stability criterion for vehicle formations. The location of the Laplacian eigenvalues can be correlated to the graph structure, and therefore used to identify desirable and undesirable formation interconnection topologies

    Integral Cayley graphs and groups

    Full text link
    We solve two open problems regarding the classification of certain classes of Cayley graphs with integer eigenvalues. We first classify all finite groups that have a "non-trivial" Cayley graph with integer eigenvalues, thus solving a problem proposed by Abdollahi and Jazaeri. The notion of Cayley integral groups was introduced by Klotz and Sander. These are groups for which every Cayley graph has only integer eigenvalues. In the second part of the paper, all Cayley integral groups are determined.Comment: Submitted June 18 to SIAM J. Discrete Mat

    A graph discretization of the Laplace-Beltrami operator

    Get PDF
    We show that eigenvalues and eigenfunctions of the Laplace-Beltrami operator on a Riemannian manifold are approximated by eigenvalues and eigenvectors of a (suitably weighted) graph Laplace operator of a proximity graph on an epsilon-net.Comment: 29 pages, v4: final, to appear in J of Spectral Theor
    corecore