5,540 research outputs found

    Dating Documents using Graph Convolution Networks

    Full text link
    Document date is essential for many important tasks, such as document retrieval, summarization, event detection, etc. While existing approaches for these tasks assume accurate knowledge of the document date, this is not always available, especially for arbitrary documents from the Web. Document Dating is a challenging problem which requires inference over the temporal structure of the document. Prior document dating systems have largely relied on handcrafted features while ignoring such document internal structures. In this paper, we propose NeuralDater, a Graph Convolutional Network (GCN) based document dating approach which jointly exploits syntactic and temporal graph structures of document in a principled way. To the best of our knowledge, this is the first application of deep learning for the problem of document dating. Through extensive experiments on real-world datasets, we find that NeuralDater significantly outperforms state-of-the-art baseline by 19% absolute (45% relative) accuracy points.Comment: Accepted at ACL 201

    Tensor graph convolutional neural network

    Full text link
    In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and graph pooling. For cross graph convolution, a parameterized Kronecker sum operation is proposed to generate a conjunctive adjacency matrix characterizing the relationship between every pair of nodes across two subgraphs. Taking this operation, then general graph convolution may be efficiently performed followed by the composition of small matrices, which thus reduces high memory and computational burden. Encapsuling sequence graphs into a recursive learning, the dynamics of graphs can be efficiently encoded as well as the spatial layout of graphs. To validate the proposed TGCNN, experiments are conducted on skeleton action datasets as well as matrix completion dataset. The experiment results demonstrate that our method can achieve more competitive performance with the state-of-the-art methods

    Understanding Dynamic Scenes using Graph Convolution Networks

    Full text link
    We present a novel Multi-Relational Graph Convolutional Network (MRGCN) based framework to model on-road vehicle behaviors from a sequence of temporally ordered frames as grabbed by a moving monocular camera. The input to MRGCN is a multi-relational graph where the graph's nodes represent the active and passive agents/objects in the scene, and the bidirectional edges that connect every pair of nodes are encodings of their Spatio-temporal relations. We show that this proposed explicit encoding and usage of an intermediate spatio-temporal interaction graph to be well suited for our tasks over learning end-end directly on a set of temporally ordered spatial relations. We also propose an attention mechanism for MRGCNs that conditioned on the scene dynamically scores the importance of information from different interaction types. The proposed framework achieves significant performance gain over prior methods on vehicle-behavior classification tasks on four datasets. We also show a seamless transfer of learning to multiple datasets without resorting to fine-tuning. Such behavior prediction methods find immediate relevance in a variety of navigation tasks such as behavior planning, state estimation, and applications relating to the detection of traffic violations over videos.Comment: To appear at IROS 202

    Generalized Value Iteration Networks: Life Beyond Lattices

    Full text link
    In this paper, we introduce a generalized value iteration network (GVIN), which is an end-to-end neural network planning module. GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. We propose three novel differentiable kernels as graph convolution operators and show that the embedding based kernel achieves the best performance. We further propose episodic Q-learning, an improvement upon traditional n-step Q-learning that stabilizes training for networks that contain a planning module. Lastly, we evaluate GVIN on planning problems in 2D mazes, irregular graphs, and real-world street networks, showing that GVIN generalizes well for both arbitrary graphs and unseen graphs of larger scale and outperforms a naive generalization of VIN (discretizing a spatial graph into a 2D image).Comment: 14 pages, conferenc

    Graph Convolution: A High-Order and Adaptive Approach

    Full text link
    In this paper, we presented a novel convolutional neural network framework for graph modeling, with the introduction of two new modules specially designed for graph-structured data: the kk-th order convolution operator and the adaptive filtering module. Importantly, our framework of High-order and Adaptive Graph Convolutional Network (HA-GCN) is a general-purposed architecture that fits various applications on both node and graph centrics, as well as graph generative models. We conducted extensive experiments on demonstrating the advantages of our framework. Particularly, our HA-GCN outperforms the state-of-the-art models on node classification and molecule property prediction tasks. It also generates 32% more real molecules on the molecule generation task, both of which will significantly benefit real-world applications such as material design and drug screening

    Learning Depthwise Separable Graph Convolution from Data Manifold

    Full text link
    Convolution Neural Network (CNN) has gained tremendous success in computer vision tasks with its outstanding ability to capture the local latent features. Recently, there has been an increasing interest in extending convolution operations to the non-Euclidean geometry. Although various types of convolution operations have been proposed for graphs or manifolds, their connections with traditional convolution over grid-structured data are not well-understood. In this paper, we show that depthwise separable convolution can be successfully generalized for the unification of both graph-based and grid-based convolution methods. Based on this insight we propose a novel Depthwise Separable Graph Convolution (DSGC) approach which is compatible with the tradition convolution network and subsumes existing convolution methods as special cases. It is equipped with the combined strengths in model expressiveness, compatibility (relatively small number of parameters), modularity and computational efficiency in training. Extensive experiments show the outstanding performance of DSGC in comparison with strong baselines on multi-domain benchmark datasets

    Attributed Graph Clustering via Adaptive Graph Convolution

    Full text link
    Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.Comment: IJCAI 201

    Local Spectral Graph Convolution for Point Set Feature Learning

    Full text link
    Feature learning on point clouds has shown great promise, with the introduction of effective and generalizable deep learning frameworks such as pointnet++. Thus far, however, point features have been abstracted in an independent and isolated manner, ignoring the relative layout of neighboring points as well as their features. In the present article, we propose to overcome this limitation by using spectral graph convolution on a local graph, combined with a novel graph pooling strategy. In our approach, graph convolution is carried out on a nearest neighbor graph constructed from a point's neighborhood, such that features are jointly learned. We replace the standard max pooling step with a recursive clustering and pooling strategy, devised to aggregate information from within clusters of nodes that are close to one another in their spectral coordinates, leading to richer overall feature descriptors. Through extensive experiments on diverse datasets, we show a consistent demonstrable advantage for the tasks of both point set classification and segmentation

    Graph Convolutional Network for Recommendation with Low-pass Collaborative Filters

    Full text link
    \textbf{G}raph \textbf{C}onvolutional \textbf{N}etwork (\textbf{GCN}) is widely used in graph data learning tasks such as recommendation. However, when facing a large graph, the graph convolution is very computationally expensive thus is simplified in all existing GCNs, yet is seriously impaired due to the oversimplification. To address this gap, we leverage the \textit{original graph convolution} in GCN and propose a \textbf{L}ow-pass \textbf{C}ollaborative \textbf{F}ilter (\textbf{LCF}) to make it applicable to the large graph. LCF is designed to remove the noise caused by exposure and quantization in the observed data, and it also reduces the complexity of graph convolution in an unscathed way. Experiments show that LCF improves the effectiveness and efficiency of graph convolution and our GCN outperforms existing GCNs significantly. Codes are available on \url{https://github.com/Wenhui-Yu/LCFN}.Comment: ICML 2020 pape

    Graph Convolution over Pruned Dependency Trees Improves Relation Extraction

    Full text link
    Dependency trees help relation extraction models capture long-range relations between words. However, existing dependency-based models either neglect crucial information (e.g., negation) by pruning the dependency trees too aggressively, or are computationally inefficient because it is difficult to parallelize over different tree structures. We propose an extension of graph convolutional networks that is tailored for relation extraction, which pools information over arbitrary dependency structures efficiently in parallel. To incorporate relevant information while maximally removing irrelevant content, we further apply a novel pruning strategy to the input trees by keeping words immediately around the shortest path between the two entities among which a relation might hold. The resulting model achieves state-of-the-art performance on the large-scale TACRED dataset, outperforming existing sequence and dependency-based neural models. We also show through detailed analysis that this model has complementary strengths to sequence models, and combining them further improves the state of the art.Comment: EMNLP 2018. Code available at: https://github.com/qipeng/gcn-over-pruned-tree
    corecore