798,323 research outputs found
Analysis of short term grain policy alternatives (for the remainder of the 1974 rice year) in the Republic of Korea
Stratification Instability in Granular Flows
When a mixture of two kinds of grains differing in size and shape is poured
in a vertical two-dimensional cell, the mixture spontaneously stratifies in
alternating layers of small and large grains, whenever the large grains are
more faceted than the small grains. Otherwise, the mixture spontaneously
segregates in different regions of the cell when the large grains are more
rounded than the small grains. We address the question of the origin of the
instability mechanism leading to stratification using a recently proposed set
of equations for surface flow of granular mixtures. We show that the stable
solution of the system is a segregation solution due to size (large grains tend
to segregate downhill near the substrate and small grains tend to segregate
uphill) and shape (rounded grains tend to segregate downhill and more faceted
grains tend to segregate uphill). As a result, the segregation solution of the
system is realized for mixtures of large-rounded grains and small-cubic grains
with the large-rounded grains segregating near the bottom of the pile.
Stability analysis reveals the instability mechanism driving the system to
stratification as a competition between size-segregation and shape-segregation
taking place for mixtures of large-cubic grains and small-rounded grains. The
large-cubic grains tend to size-segregate at the bottom of the pile, while at
the same time, they tend to shape-segregate near the pouring point. Thus, the
segregation solution becomes unstable, and the system evolves spontaneously to
stratification.Comment: 10 pages, 10 figures, http://polymer.bu.edu/~hmakse/Home.htm
Infrared Spectra of Meteoritic SiC Grains
We present here the first infrared spectra of meteoritic SiC grains. The
mid-infrared transmission spectra of meteoritic SiC grains isolated from the
Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in
order to make available the optical properties of presolar SiC grains. These
grains are most likely stellar condensates with an origin predominately in
carbon stars. Measurements were performed on two different extractions of
presolar SiC from the Murchison meteorite. The two samples show very different
spectral appearance due to different grain size distributions. The spectral
feature of the smaller meteoritic SiC grains is a relatively broad absorption
band found between the longitudinal and transverse lattice vibration modes
around 11.3 micron, supporting the current interpretation about the presence of
SiC grains in carbon stars. In contrast to this, the spectral feature of the
large (> 5 micron) grains has an extinction minimum around 10 micron. The
obtained spectra are compared with commercially available SiC grains and the
differences are discussed. This comparison shows that the crystal structure
(e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the
optical signature of SiC grains compared to e.g. grain size.Comment: 7 pages, 6 figures. To appear in A&
Stellar origin of 15N-rich presolar SiC grains of type AB: Supernovae with explosive hydrogen burning
© 2017. The American Astronomical Society. All rights reserved. We report C, N, and Si isotopic data for 59 highly 13 C-enriched presolar submicron-to micron-sized SiC grains from the Murchison meteorite, including eight putative nova grains (PNGs) and 29 15 N-rich ( 14 N/ 15 N ≤ solar) AB grains, and their Mg-Al, S, and Ca-Ti isotope data when available. These 37 grains are enriched in 13 C, 15 N, and 26 Al with the PNGs showing more extreme enhancements. The 15 N-rich AB grains show systematically higher 26 Al and 30 Si excesses than the 14 N-rich AB grains. Thus, we propose to divide the AB grains into groups 1 ( 14 N/ 15 N < solar) and 2 ( 14 N/ 15 N ≥ solar). For the first time, we have obtained both S and Ti isotopic data for five AB1 grains and one PNG and found 32 S and/or 50 Ti enhancements. Interestingly, one AB1 grain had the largest 32 S and 50 Ti excesses, strongly suggesting a neutron-capture nucleosynthetic origin of the 32 S excess and thus the initial presence of radiogenic 32 Si (t 1/2 = 153 years). More importantly, we found that the 15 N and 26 Al excesses of AB1 grains form a trend that extends to the region in the N-Al isotope plot occupied by C2 grains, strongly indicating a common stellar origin for both AB1 and C2 grains. Comparison of supernova models with the AB1 and C2 grain data indicates that these grains came from supernovae that experienced H ingestion into the He/C zones of their progenitors
STELLAR ORIGINS OF EXTREMELY C-13- AND N-15-ENRICHED PRESOLAR SIC GRAINS: NOVAE OR SUPERNOVAE?
Extreme excesses of 13C (12C/13C < 10) and 15N (14N/15N < 20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized 13C- and 15N-enriched presolar SiC grains (12C/13C < 16 and 14N/15N < ~100) from Murchison, and their correlated Mg–Al, S, and Ca–Ti isotope data when available. These grains are enriched in 13C and 15N, but with quite diverse Si isotopic signatures. Four grains with 29,30Si excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with 30Si excesses and 29Si depletions show lower-than-solar 34S/32S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also 13C enriched, but have a range of higher 14N/15N. We found that 15N-enriched AB grains (~50 < 14N/15N < ~100) have distinctive isotopic signatures compared to putative nova grains, such as higher 14N/15N, lower 26Al/27Al, and lack of 30Si excess, indicating weaker proton-capture nucleosynthetic environments
- …
