4,216 research outputs found
The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis
Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase–linked and G protein–coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein–coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug targe
Recommended from our members
Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization,secondary mediators, and Rac
The C-type lectin-like receptor 2 (CLEC-2)activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM).Here, we demonstrate using sucrose gradient ultracentrifugation and methyl--cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization,Rac1 activation, and release of ADP and thromboxane A2 (TxA2). The role of ADP and TxA2 in mediating hosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast,tyrosine phosphorylation of the GPVIFcR -chain ITAM, which has 2 YxxL motifs,is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators,and Rac activation
G6b-B Inhibits Constitutive and Agonist-induced Signaling by Glycoprotein VI and CLEC-2
Platelets play an essential role in wound healing by forming thrombi that plug holes in the walls of damaged blood vessels. To achieve this, platelets express a diverse array of cell surface receptors and signaling proteins that induce rapid platelet activation. In this study we show that two platelet glycoprotein receptors that signal via an immunoreceptor tyrosine-based activation motif (ITAM) or an ITAM-like domain, namely the collagen receptor complex glycoprotein VI (GPVI)-FcR γ-chain and the C-type lectin-like receptor 2 (CLEC-2), respectively, support constitutive (i.e. agonist-independent) signaling in a cell line model using a nuclear factor of activated T-cells (NFAT) transcriptional reporter assay that can detect low level activation of phospholipase Cγ (PLCγ). Constitutive and agonist signaling by both receptors is dependent on Src and Syk family kinases, and is inhibited by G6b-B, a platelet immunoglobulin receptor that has two immunoreceptor tyrosine-based inhibitory motifs in its cytosolic tail. Mutation of the conserved tyrosines in the two immunoreceptor tyrosine-based inhibitory motifs prevents the inhibitory action of G6b-B. Interestingly, the inhibitory activity of G6b-B is independent of the Src homology 2 (SH2)-domain containing tyrosine phosphatases, SHP1 and SHP2, and the inositol 5′-phosphatase, SHIP. Constitutive signaling via Src and Syk tyrosine kinases is observed in platelets and is associated with tyrosine phosphorylation of GPVI-FcR γ-chain and CLEC-2. We speculate that inhibition of constitutive signaling through Src and Syk tyrosine kinases by G6b-B may help to prevent unwanted platelet activation
Recommended from our members
Immobilized fibrinogen activates human platelets through GPVI
GPVI, a major platelet activation receptor for collagen and fibrin, is considered as a particularly promising safe antithrombotic target. In this study, we show that human GPVI signals upon platelet adhesion to fibrinogen. Full spreading of human platelets on fibrinogen is abolished in platelets from GPVI-deficient patients suggesting that fibrinogen activates platelets through GPVI. While mouse platelets fail to spread on fibrinogen, human-GPVI-transgenic mouse platelets show full spreading and increased Ca2+ signalling through the tyrosine kinase Syk. Direct binding of fibrinogen to human GPVI was shown by surface plasmon resonance and by increased adhesion of human GPVI-transfected Rbl-2H3 cells to fibrinogen relative to mock-transfected cells. Blockade of human GPVI with the Fab of the monoclonal antibody 9O12 impairs platelet aggregation on preformed platelet aggregates in flowing blood independent of collagen and fibrin exposure. These results demonstrate that human GPVI binds to immobilized fibrinogen and show that this contributes to platelet spreading and platelet aggregation under flow
Recommended from our members
Myricetin, the main flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5
Background: Flavonoids have been characterized as a prominent class of compounds to treat thrombotic diseases through the inhibition of thiol isomerases. Syzygium cumini is a flavonoid-rich medicinal plant that contains myricetin and gallic acid. Little is known about the potential anti-platelet properties of S. cumini and its constituent flavonoids.
Objective
To evaluate the anti-platelet effects and mechanism of action of a polyphenol-rich extract (PESc) from S. cumini leaf and its most prevalent polyphenols, myricetin and gallic acid.
Methods
PESc, myricetin and gallic acid were incubated with platelet-rich plasma and washed platelets to assess platelet aggregation and activation. In vitro platelet adhesion and thrombus formation as well as in vivo bleeding time were performed. Finally, myricetin was incubated with recombinant thiol isomerases to assess its potential to bind and inhibit these, whilst molecular docking studies predicted possible binding sites.
Results:
PESc decreased platelet activation and aggregation induced by different agonists. Myricetin exerted potent anti-platelet effects, whereas gallic acid did not. Myricetin reduced the ability of platelets to spread on collagen, form thrombi in vitro without affecting haemostasis in vivo. Fluorescence quenching studies suggested myricetin binds to different thiol isomerases with similar affinity, despite inhibiting only protein disulphide isomerase (PDI) and ERp5 reductase activities (IC50~3.5 μM). Finally, molecular docking studies suggested myricetin formed non-covalent bonds with PDI and ERp5.
Conclusions:
PESc and its most abundant flavonoid myricetin strongly inhibit platelet function. Additionally, myricetin is a novel inhibitor of ERp5 and PDI, unveiling a new therapeutic perspective for the treatment of thrombotic disorders
Recommended from our members
Discovery of novel GPVI receptor antagonists by structure-based repurposing.
Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing
Psoralen and ultraviolet A light treatment directly affects phosphatidylinositol 3-kinase signal transduction by altering plasma membrane packing
Psoralen and ultraviolet A light (PUNTA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor and a-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton's tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC), 8.4 +/- 1.1 versus 4.3 +/- 1.1 mu M) and glycoprotein VI (EC50, 1.61 +/- 0.85 versus 0.26 +/- 0.21 mu g/ml) but not PAR4 (EC50, 50 +/- 1 versus 58 +/- 1 mu m) signal transduction. Our findings were confirmed in T-cells ftom graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases
Recommended from our members
Syk-dependent Phosphorylation of CLEC-2: A Novel Mechanism of Hem-Immunoreceptor Tyrosine-Based Activation Motif Signaling
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors
MMP-13 binds to platelet receptors αIIbβ3 and GPVI and impairs aggregation and thrombus formation.
BACKGROUND: Acute thrombotic syndromes lead to atherosclerotic plaque rupture with subsequent thrombus formation, myocardial infarction and stroke. Following rupture, flowing blood is exposed to plaque components, including collagen, which triggers platelet activation and aggregation. However, plaque rupture releases other components into the surrounding vessel which have the potential to influence platelet function and thrombus formation. OBJECTIVES: Here we sought to elucidate whether matrix metalloproteinase-13 (MMP-13), a collagenolytic metalloproteinase up-regulated in atherothrombotic and inflammatory conditions, affects platelet aggregation and thrombus formation. RESULTS: We demonstrate that MMP-13 is able to bind to platelet receptors alphaIIbbeta3 (αIIbβ3) and platelet glycoprotein (GP)VI. The interactions between MMP-13, GPVI and αIIbβ3 are sufficient to significantly inhibit washed platelet aggregation and decrease thrombus formation on fibrillar collagen. CONCLUSIONS: Our data demonstrate a role for MMP-13 in the inhibition of both platelet aggregation and thrombus formation in whole flowing blood, and may provide new avenues of research into the mechanisms underlying the subtle role of MMP-13 in atherothrombotic pathologies
- …
