854,335 research outputs found

    Glucose sensing by means of silicon photonics

    Get PDF
    Diabetes is a fast growing metabolic disease, where the patients suffer from disordered glucose blood levels. Monitoring the blood glucose values in combination with extra insulin injection is currently the only therapy to keep the glucose concentration in diabetic patients under control, minimizing the long- term effects of elevated glucose concentrations and improving quality of life of the diabetic patients. Implantable sensors allow continuous glucose monitoring, offering the most reliable data to control the glucose levels. Infrared absorption spectrometers offer a non-chemical measurement method to determine the small glucose concentrations in blood serum. In this work, a spectrometer platform based on silicon photonics is presented, allowing the realization of very small glucose sensors suitable for building implantable sensors. A proof-of-concept of a spectrometer with integrated evanescent sample interface is presented, and the route towards a fully implantable spectrometer is discussed

    Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Level in SD Rats Model

    Get PDF
    Abstract This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; \u3c1000 Da, GO2KA2; 1000–10,000 Da, GO2KA3; MW \u3e 10,000 Da). The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control (0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW \u3c 1000 Da) had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management

    Characterization of theThreshold for NAD(P)H:quinone Oxidoreductase Activity in Intact Sulforaphane-treated Pulmonary Arterial Endothelial Cells

    Get PDF
    Treatment of bovine pulmonary arterial endothelial cells in culture with the phase II enzyme inducer sulforaphane (5 μM, 24 h; sulf-treated) increased cell-lysate NAD(P)H:quinone oxidoreductase (NQO1) activity by 5.7 ± 0.6 (mean ± SEM)-fold, but intact-cell NQO1 activity by only 2.8 ± 0.1-fold compared to control cells. To evaluate the hypothesis that the threshold for sulforaphane-induced intact-cell NQO1 activity reflects a limitation in the capacity to supply NADPH at a sufficient rate to drive all the induced NQO1 to its maximum activity, total KOH-extractable pyridine nucleotides were measured in cells treated with duroquinone to stimulate maximal NQO1 activity. NQO1 activation increased NADP+ in control and sulf-treated cells, with the effect more pronounced in the sulf-treated cells, in which the NADPH was also decreased. Glucose-6-phosphate dehydrogenase (G-6-PDH) inhibition partially blocked NQO1 activity in control and sulf-treated cells, but G-6-PDH overexpression via transient transfection with the human cDNA alleviated neither the restriction on intact sulf-treated cell NQO1 activity nor the impact on the NADPH/NADP+ ratios. Intracellular ATP levels were not affected by NQO1 activation in control or sulf-treated cells. An increased dependence on extracellular glucose and a rightward shift in the Km for extracellular glucose were observed in NQO1-stimulated sulf-treated vs control cells. The data suggest that glucose transport in the sulf-treated cells may be insufficient to support the increased metabolic demand for pentose phosphate pathway-generated NADPH as an explanation for the NQO1 threshold

    Evaluation of Glycated Albumin (GA) and GA/Hba1c Ratio for Diagnosis of Diabetes and Glycemic Control: A Comprehensive Review

    Get PDF
    Diabetes Mellitus (DM) is a group of metabolic diseases characterized by chronic high blood glucose concentrations (hyperglycemia). When it is left untreated or improperly managed, it can lead to acute complications including diabetic ketoacidosis and non-ketotic hyperosmolar coma. In addition, possible long-term complications include impotence, nerve damage, stroke, chronic kidney failure, cardiovascular disease, foot ulcers, and retinopathy. Historically, universal methods to measure glycemic control for the diagnosis of diabetes included fasting plasma glucose level (FPG), 2-h plasma glucose (2HP), and random plasma glucose. However, these measurements did not provide information about glycemic control over a long period of time. To address this problem, there has been a switch in the past decade to diagnosing diabetes and its severity through measurement of blood glycated proteins such as Hemoglobin A1c (HbA1c) and glycated albumin (GA). Diagnosis and evaluation of diabetes using glycated proteins has many advantages including high accuracy of glycemic control over a period of time. Currently, common laboratory methods used to measure glycated proteins are high-performance liquid chromatography (HPLC), immunoassay, and electrophoresis. HbA1c is one of the most important diagnostic factors for diabetes. However, some reports indicate that HbA1c is not a suitable marker to determine glycemic control in all diabetic patients. GA, which is not influenced by changes in the lifespan of erythrocytes, is thought to be a good alternative indicator of glycemic control in diabetic patients. Here, we review the literature that has investigated the suitability of HbA1c, GA and GA:HbA1c as indicators of long-term glycemic control and demonstrate the importance of selecting the appropriate glycated protein based on the patient’s health status in order to provide useful and modern point-of-care monitoring and treatment

    Optimal Regulation of Blood Glucose Level in Type I Diabetes using Insulin and Glucagon

    Full text link
    The Glucose-Insulin-Glucagon nonlinear model [1-4] accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package PSOPT. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.Comment: Accepted for publication in PLOS ON

    Text Messaging in the Patient-Centered Medical Home to Improve Glucose Control and Retinopathy Screening.

    Get PDF
    Purpose: To evaluate the effectiveness of a text messaging program (TMP) to improve glucose control, retinopathy screening (RS) rates, and self-care behaviors in patients with uncontrolled type 2 diabetes. Methods: A single-group design with a quasi-systematic random sample (n=20) received educational/exhortational text messages on their cellular phones for 3 months. Subjects, 12 of whom identified as a minority ethnicity, were mostly male, aged 27-73 years. Results: Glucose control and RS rates improved significantly. Subjects (\u3e70%) reported changes in self-care behaviors. Conclusion: Leveraging ubiquitous technology, a TMP for patients with limited access to healthcare education, holds promis

    Improved Self-Control Associated with Using Relatively Large Amounts of Glucose: Learning Self-Control Is Metabolically Expensive

    Get PDF
    The current study examined whether changes in glucose during a self-control task would predict changes in self-control performance later on. Participants attended two experimental sessions, spaced two weeks apart. During each session, they had their glucose measured, completed the Stroop task as a measure of self-control, and then had their glucose measured again. Larger decreases in glucose (from before to after the Stroop task) during the first session predicted larger increases in improvement on the Stroop task during the second session, in the form of increased speed. Learning self-control might benefit from using larger amounts of glucose. Learning self-control is metabolically expensive. These findings raise the possibility that self-control fatigue occurs because metabolic energy is depleted during the learning of self-control

    Change in blood glucose level in rats after immobilization

    Get PDF
    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant
    corecore