71,366 research outputs found
Introduction and Expression of a Rabbit β-globin Gene in Mouse Fibroblasts
The cloned chromosomal rabbit ß-globin gene has been introduced into mouse fibroblasts by DNA-mediated gene transfer (transformation). In this report, we examine the expression of the rabbit gene in six independent transformants that contain from 1 to 20 copies of the cloned globin gene. Rabbit globin transcripts were detected in two of these transformants at steady-state concentrations of 5 and 2 copies per cell. The globin transcripts from one cell line are polyadenylylated and migrate as 9S RNA on methylmercury gels. These transcripts reflect correct processing of the two intervening sequences but lack 48 ± 5 nucleotides present at the 5' terminus of rabbit erythrocyte globin mRNA
Structural interpretation of the amino acid sequence of a second domain from the Artemia covalent polymer globin
Artemia has a complex extracellular hemoglobin of Mr 260,000 comprising two globin chains (Mr 130,000) each of which is a polymer of eight covalently linked domains of Mr 16,000. The primary structure of this polymeric globin was studied to understand how globin folded domains are ordered within a globin chain and, in turn, how the latter associate into a functional hemoglobin molecule. Here we report the amino acid sequence of a second domain, E7 (Mr 16,081, excluding the heme), and interpretations of sequence data by computer-assisted alignment and modeling. This clearly shows that, as with domain E1 (Moens, L. Van Hauwaert, M.-L. De Smet, K. Geelen, D. Verpooten, G. Van Beeumen, J. Wodak, S. Alard, P. & Trotman, C. (1988) J. Biol. Chem. 263, 4679-4685), domain E7 is compatible with a globin folded structure of the β-type chain. Several specific differences of domains E7 and E1 from the classic globins are identified. They possibly can be interpreted in terms of specific requirements for a double octameric functional molecule.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the {\beta}-globin locus
The principles underlying the architectural landscape of chromatin beyond the
nucleosome level in living cells remains largely unknown despite its potential
to play a role in mammalian gene regulation. We investigated the 3-dimensional
folding of a 1 Mbp region of human chromosome 11 containing the {\beta}-globin
genes by integrating looping interactions of the insulator protein CTCF
determined comprehensively by chromosome conformation capture (3C) into a
polymer model of chromatin. We find that CTCF-mediated cell type specific
interactions in erythroid cells are organized to favor contacts known to occur
in vivo between the {\beta}-globin locus control region (LCR) and genes. In
these cells, the modeled {\beta}-globin domain folds into a globule with the
LCR and the active globin genes on the periphery. By contrast, in non-erythroid
cells, the globule is less compact with few but dominant CTCF interactions
driving the genes away from the LCR. This leads to a decrease in contact
frequencies that can exceed 1000-fold depending on the stiffness of the
chromatin and the exact positioning of the genes. Our findings show that an
ensemble of CTCF contacts functionally affects spatial distances between
control elements and target genes contributing to chromosomal organization
required for transcription.Comment: Full article, including Supp. Mat., is available at Nucleic Acids
Research, doi: 10.1093/nar/gks53
Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv
Copyright: © 2010 Pink et al.Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.Ryan Pink is supported by a grant from Action Medical Research; Daniel Caley is supported by a grant from The Dunhill Medical Trust; David Carter is supported by a grant from the British Society for Haematology
Nitrogen distribution by globin
This and other experiences with the tryptophane method of Fürth and Nobel led us to doubt seriously the reliability of quantitative data obtained by its application. When, therefore, just as we completed our work with it, Folin and Looney (6) described another and apparently better method of determination, a method based upon a different color reaction and capable moreover of convenient combination with a quantitative procedure for tyrosine, it seemed to us worth while to review the problem again. With the aid of this newer method we have now determined the tryptophane and tyrosine content of two series of globin preparations, and have, we believe, settled fairly decisively the proportion of these amino-acids yielded by the pure protein. We have also taken occasion to determine by the method of Van Slyke the general distribution of nitrogen in the globin molecule
Recommended from our members
Creating New β-Globin-Expressing Lentiviral Vectors by High-Resolution Mapping of Locus Control Region Enhancer Sequences.
Hematopoietic stem cell gene therapy is a promising approach for treating disorders of the hematopoietic system. Identifying combinations of cis-regulatory elements that do not impede packaging or transduction efficiency when included in lentiviral vectors has proven challenging. In this study, we deploy LV-MPRA (lentiviral vector-based, massively parallel reporter assay), an approach that simultaneously analyzes thousands of synthetic DNA fragments in parallel to identify sequence-intrinsic and lineage-specific enhancer function at near-base-pair resolution. We demonstrate the power of LV-MPRA in elucidating the boundaries of previously unknown intrinsic enhancer sequences of the human β-globin locus control region. Our approach facilitated the rapid assembly of novel therapeutic βAS3-globin lentiviral vectors harboring strong lineage-specific recombinant control elements capable of correcting a mouse model of sickle cell disease. LV-MPRA can be used to map any genomic locus for enhancer activity and facilitates the rapid development of therapeutic vectors for treating disorders of the hematopoietic system or other specific tissues and cell types
The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken
The replacement histone H2A.Z is variously reported
as being linked to gene expression and preventing the
spread of heterochromatin in yeast, or concentrated
at heterochromatin in mammals. To resolve this
apparent dichotomy, affinity-purified antibodies
against the N-terminal region of H2A.Z, in both a triacetylatedandnon-
acetylatedstate, areusedin native
chromatin immmuno-precipitation experiments with
mononucleosomes from three chicken cell types. The
hyperacetylated species concentrates at the 50 end of
active genes, both tissue specific and housekeeping
but is absent from inactive genes, while the
unacetylated form is absent from both active and
inactive genes. A concentration of H2A.Z is also
found at insulators under circumstances implying a
link to barrier activity but not to enhancer blocking.
Although acetylated H2A.Z is widespread throughout
the interphase genome, at mitosis its acetylation is
erased, the unmodified form remaining. Thus,
although H2A.Z may operate as an epigenetic marker
for active genes, its N-terminal acetylation does not
Revealing mammalian evolutionary relationships by comparative analysis of gene clusters
Many software tools for comparative analysis of genomic sequence data have been released in recent decades. Despite this, it remains challenging to determine evolutionary relationships in gene clusters due to their complex histories involving duplications, deletions, inversions, and conversions. One concept describing these relationships is orthology. Orthologs derive from a common ancestor by speciation, in contrast to paralogs, which derive from duplication. Discriminating orthologs from paralogs is a necessary step in most multispecies sequence analyses, but doing so accurately is impeded by the occurrence of gene conversion events. We propose a refined method of orthology assignment based on two paradigms for interpreting its definition: by genomic context or by sequence content. X-orthology (based on context) traces orthology resulting from speciation and duplication only, while N-orthology (based on content) includes the influence of conversion events
Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia
This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially ?-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating ?-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for ß-thalassemia.<br/
VEZF1 elements mediate protection from DNA methylation
There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin stat
- …
