21,322 research outputs found

    The PLACE Toolkit: exposing geospatial ready digital collections

    Get PDF
    PLACE, the Position-based Library Archive Coordinate Explorer, is a University of New Hampshire geospatial data server and search interface that enables discovery of digital collections. Identifying geographic coordinates for “geospatial ready” digitized cultural heritage materials is key to the project. Presented: Open Repositories 2017, Brisbane, Australia. June 27, 201

    Geospatial Authentication

    Get PDF
    A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time has been developed. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server. The Geospatial Authentication software has two parts Server and Client. The server software is a virtual private network (VPN) developed in Linux operating system using Perl programming language. The server can be a stand-alone VPN server or can be combined with other applications and services. The client software is a GUI Windows CE software, or Mobile Graphical Software, that allows users to authenticate into a network. The purpose of the client software is to pass the needed satellite information to the server for authentication

    FogGIS: Fog Computing for Geospatial Big Data Analytics

    Full text link
    Cloud Geographic Information Systems (GIS) has emerged as a tool for analysis, processing and transmission of geospatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client. This paper developed a Fog-based framework named Fog GIS for mining analytics from geospatial data. We built a prototype using Intel Edison, an embedded microprocessor. We validated the FogGIS by doing preliminary analysis. including compression, and overlay analysis. Results showed that Fog computing hold a great promise for analysis of geospatial data. We used several open source compression techniques for reducing the transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (09-11 December, 2016) Indian Institute of Technology (Banaras Hindu University) Varanasi, Indi

    GeomRDF: A Geodata Converter with a Fine-Grained Structured Representation of Geometry in the Web

    Get PDF
    In recent years, with the advent of the web of data, a growing number of national mapping agencies tend to publish their geospatial data as Linked Data. However, differences between traditional GIS data models and Linked Data model can make the publication process more complicated. Besides, it may require, to be done, the setting of several parameters and some expertise in the semantic web technologies. In addition, the use of standards like GeoSPARQL (or ad hoc predicates) is mandatory to perform spatial queries on published geospatial data. In this paper, we present GeomRDF, a tool that helps users to convert spatial data from traditional GIS formats to RDF model easily. It generates geometries represented as GeoSPARQL WKT literal but also as structured geometries that can be exploited by using only the RDF query language, SPARQL. GeomRDF was implemented as a module in the RDF publication platform Datalift. A validation of GeomRDF has been realized against the French administrative units dataset (provided by IGN France).Comment: 12 pages, 2 figures, the 1st International Workshop on Geospatial Linked Data (GeoLD 2014) - SEMANTiCS 201

    Global-Scale Resource Survey and Performance Monitoring of Public OGC Web Map Services

    Full text link
    One of the most widely-implemented service standards provided by the Open Geospatial Consortium (OGC) to the user community is the Web Map Service (WMS). WMS is widely employed globally, but there is limited knowledge of the global distribution, adoption status or the service quality of these online WMS resources. To fill this void, we investigated global WMSs resources and performed distributed performance monitoring of these services. This paper explicates a distributed monitoring framework that was used to monitor 46,296 WMSs continuously for over one year and a crawling method to discover these WMSs. We analyzed server locations, provider types, themes, the spatiotemporal coverage of map layers and the service versions for 41,703 valid WMSs. Furthermore, we appraised the stability and performance of basic operations for 1210 selected WMSs (i.e., GetCapabilities and GetMap). We discuss the major reasons for request errors and performance issues, as well as the relationship between service response times and the spatiotemporal distribution of client monitoring sites. This paper will help service providers, end users and developers of standards to grasp the status of global WMS resources, as well as to understand the adoption status of OGC standards. The conclusions drawn in this paper can benefit geospatial resource discovery, service performance evaluation and guide service performance improvements.Comment: 24 pages; 15 figure
    corecore