704,639 research outputs found
K\"ahlerian information geometry for signal processing
We prove the correspondence between the information geometry of a signal
filter and a K\"ahler manifold. The information geometry of a minimum-phase
linear system with a finite complex cepstrum norm is a K\"ahler manifold. The
square of the complex cepstrum norm of the signal filter corresponds to the
K\"ahler potential. The Hermitian structure of the K\"ahler manifold is
explicitly emergent if and only if the impulse response function of the highest
degree in is constant in model parameters. The K\"ahlerian information
geometry takes advantage of more efficient calculation steps for the metric
tensor and the Ricci tensor. Moreover, -generalization on the geometric
tensors is linear in . It is also robust to find Bayesian predictive
priors, such as superharmonic priors, because Laplace-Beltrami operators on
K\"ahler manifolds are in much simpler forms than those of the non-K\"ahler
manifolds. Several time series models are studied in the K\"ahlerian
information geometry.Comment: 24 pages, published versio
Perception of global facial geometry is modulated through experience
Identification of personally familiar faces is highly efficient across various viewing conditions. While the presence of robust facial representations stored in memory is considered to aid this process, the mechanisms underlying invariant identification remain unclear. Two experiments tested the hypothesis that facial representations stored in memory are associated with differential perceptual processing of the overall facial geometry. Subjects who were personally familiar or unfamiliar with the identities presented discriminated between stimuli whose overall facial geometry had been manipulated to maintain or alter the original facial configuration (see Barton, Zhao & Keenan, 2003). The results demonstrate that familiarity gives rise to more efficient processing of global facial geometry, and are interpreted in terms of increased holistic processing of facial information that is maintained across viewing distances
Steklov Spectral Geometry for Extrinsic Shape Analysis
We propose using the Dirichlet-to-Neumann operator as an extrinsic
alternative to the Laplacian for spectral geometry processing and shape
analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator,
cannot capture the spatial embedding of a shape up to rigid motion, and many
previous extrinsic methods lack theoretical justification. Instead, we consider
the Steklov eigenvalue problem, computing the spectrum of the
Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable
property of this operator is that it completely encodes volumetric geometry. We
use the boundary element method (BEM) to discretize the operator, accelerated
by hierarchical numerical schemes and preconditioning; this pipeline allows us
to solve eigenvalue and linear problems on large-scale meshes despite the
density of the Dirichlet-to-Neumann discretization. We further demonstrate that
our operators naturally fit into existing frameworks for geometry processing,
making a shift from intrinsic to extrinsic geometry as simple as substituting
the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator.Comment: Additional experiments adde
Monitoring the Petermann Ice Island with TanDEM-X
This paper presents the processing of TanDEM-X acquisitions for the monitoring of the topography of the Petermann ice island. In this particular case the area under study is continuously moving and the acquisition geometry is changing, so the processing of the iceberg’s DEMs is challenging and additional effects are to be considered. The SAR processing chain used is presented and the results obtained summarized, showing the effects and limitations observed during the process
Geometry Processing of Conventionally Produced Mouse Brain Slice Images
Brain mapping research in most neuroanatomical laboratories relies on
conventional processing techniques, which often introduce histological
artifacts such as tissue tears and tissue loss. In this paper we present
techniques and algorithms for automatic registration and 3D reconstruction of
conventionally produced mouse brain slices in a standardized atlas space. This
is achieved first by constructing a virtual 3D mouse brain model from annotated
slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed
model generates ARA-based slice images corresponding to the microscopic images
of histological brain sections. These image pairs are aligned using a geometric
approach through contour images. Histological artifacts in the microscopic
images are detected and removed using Constrained Delaunay Triangulation before
performing global alignment. Finally, non-linear registration is performed by
solving Laplace's equation with Dirichlet boundary conditions. Our methods
provide significant improvements over previously reported registration
techniques for the tested slices in 3D space, especially on slices with
significant histological artifacts. Further, as an application we count the
number of neurons in various anatomical regions using a dataset of 51
microscopic slices from a single mouse brain. This work represents a
significant contribution to this subfield of neuroscience as it provides tools
to neuroanatomist for analyzing and processing histological data.Comment: 14 pages, 11 figure
Static/Dynamic Filtering for Mesh Geometry
The joint bilateral filter, which enables feature-preserving signal smoothing
according to the structural information from a guidance, has been applied for
various tasks in geometry processing. Existing methods either rely on a static
guidance that may be inconsistent with the input and lead to unsatisfactory
results, or a dynamic guidance that is automatically updated but sensitive to
noises and outliers. Inspired by recent advances in image filtering, we propose
a new geometry filtering technique called static/dynamic filter, which utilizes
both static and dynamic guidances to achieve state-of-the-art results. The
proposed filter is based on a nonlinear optimization that enforces smoothness
of the signal while preserving variations that correspond to features of
certain scales. We develop an efficient iterative solver for the problem, which
unifies existing filters that are based on static or dynamic guidances. The
filter can be applied to mesh face normals followed by vertex position update,
to achieve scale-aware and feature-preserving filtering of mesh geometry. It
also works well for other types of signals defined on mesh surfaces, such as
texture colors. Extensive experimental results demonstrate the effectiveness of
the proposed filter for various geometry processing applications such as mesh
denoising, geometry feature enhancement, and texture color filtering
- …
