704,639 research outputs found

    K\"ahlerian information geometry for signal processing

    Full text link
    We prove the correspondence between the information geometry of a signal filter and a K\"ahler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a K\"ahler manifold. The square of the complex cepstrum norm of the signal filter corresponds to the K\"ahler potential. The Hermitian structure of the K\"ahler manifold is explicitly emergent if and only if the impulse response function of the highest degree in zz is constant in model parameters. The K\"ahlerian information geometry takes advantage of more efficient calculation steps for the metric tensor and the Ricci tensor. Moreover, α\alpha-generalization on the geometric tensors is linear in α\alpha. It is also robust to find Bayesian predictive priors, such as superharmonic priors, because Laplace-Beltrami operators on K\"ahler manifolds are in much simpler forms than those of the non-K\"ahler manifolds. Several time series models are studied in the K\"ahlerian information geometry.Comment: 24 pages, published versio

    Perception of global facial geometry is modulated through experience

    Get PDF
    Identification of personally familiar faces is highly efficient across various viewing conditions. While the presence of robust facial representations stored in memory is considered to aid this process, the mechanisms underlying invariant identification remain unclear. Two experiments tested the hypothesis that facial representations stored in memory are associated with differential perceptual processing of the overall facial geometry. Subjects who were personally familiar or unfamiliar with the identities presented discriminated between stimuli whose overall facial geometry had been manipulated to maintain or alter the original facial configuration (see Barton, Zhao & Keenan, 2003). The results demonstrate that familiarity gives rise to more efficient processing of global facial geometry, and are interpreted in terms of increased holistic processing of facial information that is maintained across viewing distances

    Steklov Spectral Geometry for Extrinsic Shape Analysis

    Full text link
    We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator.Comment: Additional experiments adde

    Monitoring the Petermann Ice Island with TanDEM-X

    Get PDF
    This paper presents the processing of TanDEM-X acquisitions for the monitoring of the topography of the Petermann ice island. In this particular case the area under study is continuously moving and the acquisition geometry is changing, so the processing of the iceberg’s DEMs is challenging and additional effects are to be considered. The SAR processing chain used is presented and the results obtained summarized, showing the effects and limitations observed during the process

    Geometry Processing of Conventionally Produced Mouse Brain Slice Images

    Full text link
    Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as an application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data.Comment: 14 pages, 11 figure

    Static/Dynamic Filtering for Mesh Geometry

    Get PDF
    The joint bilateral filter, which enables feature-preserving signal smoothing according to the structural information from a guidance, has been applied for various tasks in geometry processing. Existing methods either rely on a static guidance that may be inconsistent with the input and lead to unsatisfactory results, or a dynamic guidance that is automatically updated but sensitive to noises and outliers. Inspired by recent advances in image filtering, we propose a new geometry filtering technique called static/dynamic filter, which utilizes both static and dynamic guidances to achieve state-of-the-art results. The proposed filter is based on a nonlinear optimization that enforces smoothness of the signal while preserving variations that correspond to features of certain scales. We develop an efficient iterative solver for the problem, which unifies existing filters that are based on static or dynamic guidances. The filter can be applied to mesh face normals followed by vertex position update, to achieve scale-aware and feature-preserving filtering of mesh geometry. It also works well for other types of signals defined on mesh surfaces, such as texture colors. Extensive experimental results demonstrate the effectiveness of the proposed filter for various geometry processing applications such as mesh denoising, geometry feature enhancement, and texture color filtering
    corecore