502,858 research outputs found

    Improving machine dynamics via geometry optimization

    No full text
    The central thesis of this paper is that the dynamic performance of machinery can be improved dramatically in certain cases through a systematic and meticulous evolutionary algorithm search through the space of all structural geometries permitted by manufacturing, cost and functional constraints. This is a cheap and elegant approach in scenarios where employing active control elements is impractical for reasons of cost and complexity. From an optimization perspective the challenge lies in the efficient, yet thorough global exploration of the multi-dimensional and multi-modal design spaces often yielded by such problems. Morevoer, the designs are often defined by a mixture of continuous and discrete variables - a task that evolutionary algorithms appear to be ideally suited for. In this article we discuss the specific case of the optimization of crop spraying machinery for improved uniformity of spray deposition, subject to structural weight and manufacturing constraints. Using a mixed variable evolutionary algorithm allowed us to optimize both shape and topology. Through this process we have managed to reduce the maximum roll angle of the sprayer by an order of magnitude , whilst allowing only relatively inexpensive changes to the baseline design. Further (though less dramatic) improvements were shown to be possible when we relaxed the cost constraint. We applied the same approach to the inverse problem of reducing the mass while maintaining an acceptable roll angle - a 2% improvement proved possible in this cas

    Inverse form finding with h-adaptivity and an application to a notch stamping process

    Get PDF
    The aim is to determine the optimized semi-finished workpiece geometry to its given target geometry after a forming process. Hereby, a novel approach for inverse form finding, a type of a shape optimization, is applied to a notch stamping process. As a special feature, h-adaptive mesh refinement is considered within the iteratively performed forming simulation

    Inductive machine learning of optimal modular structures: Estimating solutions using support vector machines

    Get PDF
    Structural optimization is usually handled by iterative methods requiring repeated samples of a physics-based model, but this process can be computationally demanding. Given a set of previously optimized structures of the same topology, this paper uses inductive learning to replace this optimization process entirely by deriving a function that directly maps any given load to an optimal geometry. A support vector machine is trained to determine the optimal geometry of individual modules of a space frame structure given a specified load condition. Structures produced by learning are compared against those found by a standard gradient descent optimization, both as individual modules and then as a composite structure. The primary motivation for this is speed, and results show the process is highly efficient for cases in which similar optimizations must be performed repeatedly. The function learned by the algorithm can approximate the result of optimization very closely after sufficient training, and has also been found effective at generalizing the underlying optima to produce structures that perform better than those found by standard iterative methods
    corecore