322,295 research outputs found

    Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing

    Get PDF
    Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations

    Genome-wide association study identifies multiple susceptibility loci for diffuse large B-cell lymphoma

    Get PDF
    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of 9 promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five independent SNPs in four loci achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P = 2.33 x 10(-21)), rs2523607 at 6p21.33 (HLA-B; P = 2.40 x 10(-10)), rs79480871 at 2p23.3 (NCOA1; P = 4.23 x 10(-8)) and two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P = 9.98 x 10(-13) and 3.63 x 10(-11), respectively). These data provide substantial new evidence for genetic susceptibility to this B cell malignancy and point to pathways involved in immune recognition and immune function in the pathogenesis of DLBCL

    Genome-wide profiling of uncapped mRNA

    Get PDF
    Gene transcripts are under extensive posttranscriptional regulation, including the regulation of their stability. A major route for mRNA degradation produces uncapped mRNAs, which can be generated by decapping enzymes, endonucleases, and small RNAs. Profiling uncapped mRNA molecules is important for the understanding of the transcriptome, whose composition is determined by a balance between mRNA synthesis and degradation. In this chapter, we describe a method to profile these uncapped mRNAs at the genome scale

    Replication in Genome-Wide Association Studies

    Full text link
    Replication helps ensure that a genotype-phenotype association observed in a genome-wide association (GWA) study represents a credible association and is not a chance finding or an artifact due to uncontrolled biases. We discuss prerequisites for exact replication, issues of heterogeneity, advantages and disadvantages of different methods of data synthesis across multiple studies, frequentist vs. Bayesian inferences for replication, and challenges that arise from multi-team collaborations. While consistent replication can greatly improve the credibility of a genotype-phenotype association, it may not eliminate spurious associations due to biases shared by many studies. Conversely, lack of replication in well-powered follow-up studies usually invalidates the initially proposed association, although occasionally it may point to differences in linkage disequilibrium or effect modifiers across studies.Comment: Published in at http://dx.doi.org/10.1214/09-STS290 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Get PDF
    abstract: Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution.The electronic version of this article is the complete one and can be found online at: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-13-48

    Genome-Wide Fine-Mapping Of Diabetic Traits

    Get PDF
    Type 2 diabetes results from both genes and the environment. Mapping genetic loci in animal models can help identify genes that are involved in type 2 diabetes to better understand the disease. Heterogeneous stock (HS) rats are derived from eight inbred founder strains and maintained in a breeding strategy that minimizes inbreeding. HS rats have a highly recombinant genome, which allows for rapid fine-mapping of complex traits genome-wide. However, this results in a complicated set of relationships between animals that is non-existent in traditional genetic mapping methods. To fine-map traits involved in type 2 diabetes, multiple diabetic phenotypes were collected in 1,038 HS male rats and these animals were genotyped using the Affymetrix 10K SNP array. Following ancestral haplotype reconstruction, a mixed modeling approach was used to identify genetic loci involved in two phenotypes suggestive of diabetes: fasting glucose and glucose area under the curve after a glucose tolerance test. Sibship was used as a random effect in the model to account for the complex family relationships. A genome-wide significant marker interval was detected on chromosome 11 for fasting glucose with a 95% confidence interval of 5.75 Mb. Genome-wide significant marker intervals were also detected on chromosomes 1,3, 10, and 13 for glucose area under the curve, with the average 95% confidence interval for these loci being only 3.15 Mb. A multilocus modeling technique involving resample model averaging was applied to the fasting glucose phenotype. This technique determines how frequently each locus is detected when resampling a portion of the original data-set, thus reducing potential false positives. Multilocus modeling results for fasting glucose coincided with the significant marker interval demonstrated in the mixed modeling approach. Both approaches are effective at detecting significant marker intervals that are expected to be involved in the phenotype of interest with a greater resolution over traditional methods

    Genome-wide search for strabismus susceptibility loci.

    Get PDF
    The purpose of this study was to search for chromosomal susceptibility loci for comitant strabismus. Genomic DNA was isolated from 10mL blood taken from each member of 30 nuclear families in which 2 or more siblings are affected by either esotropia or exotropia. A genome-wide search was performed with amplification by polymerase chain reaction of 400 markers in microsatellite regions with approximately 10 cM resolution. For each locus, non-parametric affected sib-pair analysis and non-parametric linkage analysis for multiple pedigrees (Genehunter software, http://linkage.rockefeller.edu/soft/) were used to calculate multipoint lod scores and non-parametric linkage (NPL) scores, respectively. In sib-pair analysis, lod scores showed basically flat lines with several peaks of 0.25 on all chromosomes. In non-parametric linkage analysis for multiple pedigrees, NPL scores showed one peak as high as 1.34 on chromosomes 1, 2, 4, 7, 10, 15, and 16, while 2 such peaks were found on chromosomes 3, 9, 11, 12, 18, and 20. Non-parametric linkage analysis for multiple pedigrees of 30 families with comitant strabismus suggested a number of chromosomal susceptibility loci. Our ongoing study involving a larger number of families will refine the accuracy of statistical analysis to pinpoint susceptibility loci for comitant strabismus.&#60;/P&#62;</p
    corecore