1,225,568 research outputs found
Diversity, genetic structure and evidence of outcrossing in British populations of the rock fern Adiantum capillus-veneris using microsatellites
Microsatellites were isolated and a marker system was developed in the fern Adiantum capillus-veneris. Polymorphic markers were then used to study the genetic diversity and structure of populations within the UK and Ireland where this species grows at the northern edge of its range, requiring a specific rock habitat and limited to a few scattered populations. Three dinucleotide loci detected a high level of diversity (23 alleles and 28 multilocus genotypes) across the UK and Ireland, with nearly all variation partitioned among rather than within populations. Of 17 populations represented by multiple samples, all except four were monomorphic. Heterozygosity was detected in three populations, all within Glamorgan, Wales (UK), showing evidence of outcrossing. We make inferences on the factors determining the observed levels and patterns of genetic variation and the possible evolutionary history of the populations
Population genetic structure and predominance of cyclical parthenogenesis in the bird cherry–oat aphid Rhopalosiphum padi in England
Genetic diversity is determinant for pest species' success and vector competence. Understanding the ecological and evolutionary processes that determine the genetic diversity is fundamental to help identify the spatial scale at which pest populations are best managed. In the present study, we present the first comprehensive analysis of the genetic diversity and evolution of Rhopalosiphum padi, a major pest of cereals and a main vector of the barley yellow dwarf virus (BYDV), in England. We have used a genotyping by sequencing approach to study whether i) there is any underlying population genetic structure at a national and regional scale in this pest that can disperse long distances; ii) the populations evolve as a response to environmental change and selective pressures, and; iii) the populations comprise anholocyclic lineages. Individual R. padi were collected using the Rothamsted Insect Survey's suction‐trap network at several sites across England between 2004 and 2016 as part of the RIS long‐term nationwide surveillance. Results identified two genetic clusters in England that mostly corresponded to a North – South division, although gene flow is ongoing between the two subpopulations. These genetic clusters do not correspond to different life cycles types, and cyclical parthenogenesis is predominant in England. Results also show that there is dispersal with gene flow across England, although there is a reduction between the northern and southern sites with the Southwestern population being the most genetically differentiated. There is no evidence for isolation‐by‐distance and other factors like primary host distribution, uncommon in the south and absent in the southwest, could influence the dispersal patterns. Finally, results also show no evidence for the evolution of the R. padi population, and it is demographically stable despite the ongoing environmental change. These results are discussed in view of their relevance to pest management and the transmission of BYDV
Surprisingly Little Population Genetic Structure In A Fungus-Associated Beetle Despite Its Exploitation Of Multiple Hosts
In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B.cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B.cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure
Recommended from our members
Patterns of spatial genetic structures in Aedes albopictus (Diptera: Culicidae) populations in China.
BACKGROUND:The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. Little is known about the population structure and genetic differentiation of native Ae. albopictus in China. The aim of this study was to examine the patterns of the spatial genetic structures of native Ae. albopictus populations, and their relationship to dengue incidence, on a large geographical scale. METHODS:During 2016-2018, adult female Ae. albopictus mosquitoes were collected by human landing catch (HLC) or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to examine the patterns of genetic diversity, population structure, and gene flow among native Ae. albopictus populations. The correlation between population genetic indices and dengue incidence was also examined. RESULTS:A total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.245, P = 0.01). STRUCTURE analysis, PCoA and GLS interpolation analysis indicated that Ae. albopictus populations in China were regionally clustered. Gene flow and relatedness estimates were generally high between populations. We observed no correlation between population genetic indices of microsatellite loci in Ae. albopictus populations and dengue incidence. CONCLUSION:Strong gene flow probably assisted by human activities inhibited population differentiation and promoted genetic diversity among populations of Ae. albopictus. This may represent a potential risk of rapid spread of mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of vector-borne diseases
Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models.
Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants
Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird
Indexación: Scopus.The distribution of suitable habitat influences natal and breeding dispersal at small spatial scales, resulting in strong microgeographic genetic structure. Although environmental variation can promote interpopulation differences in dispersal behavior and local spatial patterns, the effects of distinct ecological conditions on within-species variation in dispersal strategies and in fine-scale genetic structure remain poorly understood. We studied local dispersal and fine-scale genetic structure in the thorn-tailed rayadito (Aphrastura spinicauda), a South American bird that breeds along a wide latitudinal gradient. We combine capture-mark-recapture data from eight breeding seasons and molecular genetics to compare two peripheral populations with contrasting environments in Chile: Navarino Island, a continuous and low density habitat, and Fray Jorge National Park, a fragmented, densely populated and more stressful environment. Natal dispersal showed no sex bias in Navarino but was female-biased in the more dense population in Fray Jorge. In the latter, male movements were restricted, and some birds seemed to skip breeding in their first year, suggesting habitat saturation. Breeding dispersal was limited in both populations, with males being more philopatric than females. Spatial genetic autocorrelation analyzes using 13 polymorphic microsatellite loci confirmed the observed dispersal patterns: a fine-scale genetic structure was only detectable for males in Fray Jorge for distances up to 450 m. Furthermore, two-dimensional autocorrelation analyzes and estimates of genetic relatedness indicated that related males tended to be spatially clustered in this population. Our study shows evidence for context-dependent variation in natal dispersal and corresponding local genetic structure in peripheral populations of this bird. It seems likely that the costs of dispersal are higher in the fragmented and higher density environment in Fray Jorge, particularly for males. The observed differences in microgeographic genetic structure for rayaditos might reflect the genetic consequences of population-specific responses to contrasting environmental pressures near the range limits of its distribution.http://onlinelibrary.wiley.com/doi/10.1002/ece3.3342/epd
- …