336,698 research outputs found

    Type Generic Observing

    Get PDF
    Observing intermediate values helps to understand what is going on when your program runs. Gill presented an observation method for lazy functional languages that preserves the program's semantics. However, users need to define for each type how its values are observed: a laborious task and strictness of the program can easily be affected. Here we define how any value can be observed based on the structure of its type by applying generic programming frameworks. Furthermore we present an extension to specify per observation point how much to observe of a value. We discuss especially functional values and behaviour based on class membership in generic programming frameworks

    C++ Templates as Partial Evaluation

    Full text link
    This paper explores the relationship between C++ templates and partial evaluation. Templates were designed to support generic programming, but unintentionally provided the ability to perform compile-time computations and code generation. These features are completely accidental, and as a result their syntax is awkward. By recasting these features in terms of partial evaluation, a much simpler syntax can be achieved. C++ may be regarded as a two-level language in which types are first-class values. Template instantiation resembles an offline partial evaluator. This paper describes preliminary work toward a single mechanism based on Partial Evaluation which unifies generic programming, compile-time computation and code generation. The language Catat is introduced to illustrate these ideas.Comment: 13 page

    A study into the feasibility of generic programming for the construction of complex software

    Get PDF
    A high degree of abstraction and capacity for reuse can be obtained in software design through the use of Generic Programming (GP) concepts. Despite widespread use of GP in computing, some areas such as the construction of generic component libraries as the skeleton for complex computing systems with extensive domains have been neglected. Here we consider the design of a library of generic components based on the GP paradigm implemented with Java. Our aim is to investigate the feasibility of using GP paradigm in the construction of complex computer systems where the management of users interacting with the system and the optimisation of the system’s resources is required.Postprint (author's final draft

    Towards rule-based visual programming of generic visual systems

    Full text link
    This paper illustrates how the diagram programming language DiaPlan can be used to program visual systems. DiaPlan is a visual rule-based language that is founded on the computational model of graph transformation. The language supports object-oriented programming since its graphs are hierarchically structured. Typing allows the shape of these graphs to be specified recursively in order to increase program security. Thanks to its genericity, DiaPlan allows to implement systems that represent and manipulate data in arbitrary diagram notations. The environment for the language exploits the diagram editor generator DiaGen for providing genericity, and for implementing its user interface and type checker.Comment: 15 pages, 16 figures contribution to the First International Workshop on Rule-Based Programming (RULE'2000), September 19, 2000, Montreal, Canad

    C++ Standard Template Library by template specialized containers

    Full text link
    The C++ Standard Template Library is the flagship example for libraries based on the generic programming paradigm. The usage of this library is intended to minimize the number of classical C/C++ errors, but does not warrant bug-free programs. Furthermore, many new kinds of errors may arise from the inaccurate use of the generic programming paradigm, like dereferencing invalid iterators or misunderstanding remove-like algorithms. In this paper we present some typical scenarios that may cause runtime or portability problems. We emit warnings and errors while these risky constructs are used. We also present a general approach to emit "customized" warnings. We support the so-called "believe-me marks" to disable warnings. We present another typical usage of our technique, when classes become deprecated during the software lifecycle

    An extensible web interface for databases and its application to storing biochemical data

    Full text link
    This paper presents a generic web-based database interface implemented in Prolog. We discuss the advantages of the implementation platform and demonstrate the system's applicability in providing access to integrated biochemical data. Our system exploits two libraries of SWI-Prolog to create a schema-transparent interface within a relational setting. As is expected in declarative programming, the interface was written with minimal programming effort due to the high level of the language and its suitability to the task. We highlight two of Prolog's features that are well suited to the task at hand: term representation of structured documents and relational nature of Prolog which facilitates transparent integration of relational databases. Although we developed the system for accessing in-house biochemical and genomic data the interface is generic and provides a number of extensible features. We describe some of these features with references to our research databases. Finally we outline an in-house library that facilitates interaction between Prolog and the R statistical package. We describe how it has been employed in the present context to store output from statistical analysis on to the database.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201
    corecore