248,244 research outputs found
Variable Selection and Model Averaging in Semiparametric Overdispersed Generalized Linear Models
We express the mean and variance terms in a double exponential regression
model as additive functions of the predictors and use Bayesian variable
selection to determine which predictors enter the model, and whether they enter
linearly or flexibly. When the variance term is null we obtain a generalized
additive model, which becomes a generalized linear model if the predictors
enter the mean linearly. The model is estimated using Markov chain Monte Carlo
simulation and the methodology is illustrated using real and simulated data
sets.Comment: 8 graphs 35 page
On the decomposition of Generalized Additive Independence models
The GAI (Generalized Additive Independence) model proposed by Fishburn is a
generalization of the additive utility model, which need not satisfy mutual
preferential independence. Its great generality makes however its application
and study difficult. We consider a significant subclass of GAI models, namely
the discrete 2-additive GAI models, and provide for this class a decomposition
into nonnegative monotone terms. This decomposition allows a reduction from
exponential to quadratic complexity in any optimization problem involving
discrete 2-additive models, making them usable in practice
Additive-multiplicative stochastic models of financial mean-reverting processes
We investigate a generalized stochastic model with the property known as mean
reversion, that is, the tendency to relax towards a historical reference level.
Besides this property, the dynamics is driven by multiplicative and additive
Wiener processes. While the former is modulated by the internal behavior of the
system, the latter is purely exogenous. We focus on the stochastic dynamics of
volatilities, but our model may also be suitable for other financial random
variables exhibiting the mean reversion property. The generalized model
contains, as particular cases, many early approaches in the literature of
volatilities or, more generally, of mean-reverting financial processes. We
analyze the long-time probability density function associated to the model
defined through a It\^o-Langevin equation. We obtain a rich spectrum of shapes
for the probability function according to the model parameters. We show that
additive-multiplicative processes provide realistic models to describe
empirical distributions, for the whole range of data.Comment: 8 pages, 3 figure
BayesX: Analysing Bayesian structured additive regression models
There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the estimation of very complex and realistic models. This paper describes the capabilities of the public domain software BayesX for estimating complex regression models with structured additive predictor. The program extends the capabilities of existing software for semiparametric regression. Many model classes well known from the literature are special cases of the models supported by BayesX. Examples are Generalized Additive (Mixed) Models, Dynamic Models, Varying Coefficient Models, Geoadditive Models, Geographically Weighted Regression and models for space-time regression. BayesX supports the most common distributions for the response variable. For univariate responses these are Gaussian, Binomial, Poisson, Gamma and negative Binomial. For multicategorical responses, both multinomial logit and probit models for unordered categories of the response as well as cumulative threshold models for ordered categories may be estimated. Moreover, BayesX allows the estimation of complex continuous time survival and hazardrate models
A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics
A primary goal in modelling the implied volatility surface (IVS) for pricing and hedging aims at reducing complexity. For this purpose one fits the IVS each day and applies a principal component analysis using a functional norm. This approach, however, neglects the degenerated string structure of the implied volatility data and may result in a modelling bias. We propose a dynamic semiparametric factor model (DSFM), which approximates the IVS in a finite dimensional function space. The key feature is that we only fit in the local neighborhood of the design points. Our approach is a combination of methods from functional principal component analysis and backfitting techniques for additive models. The model is found to have an approximate 10% better performance than a sticky moneyness model. Finally, based on the DSFM, we devise a generalized vega-hedging strategy for exotic options that are priced in the local volatility framework. The generalized vega-hedging extends the usual approaches employed in the local volatility framework.Smile, local volatility, generalized additive model, backfitting, functional principal component analysis
Regularization for Generalized Additive Mixed Models by Likelihood-Based Boosting
With the emergence of semi- and nonparametric regression the
generalized linear mixed model has been expanded to account for additive predictors. In the present paper an approach to variable selection is proposed that works for generalized additive mixed models. In contrast to common procedures it can be used in high-dimensional settings where many covariates are available and the form of the influence is unknown. It is constructed as a componentwise boosting method and hence is able to perform variable selection. The complexity of the resulting estimator is determined by information criteria. The method is nvestigated in simulation studies for binary and Poisson responses and is illustrated by using real data sets
- …
