185,357 research outputs found

    Role of line-of-sight cosmic ray interactions in forming the spectra of distant blazars in TeV gamma rays and high-energy neutrinos

    Full text link
    Active galactic nuclei (AGN) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGN. We also make predictions for the neutrino signals, which can help probe acceleration of cosmic rays in AGN.Comment: 20 pages, 5 figures; accepted for publication in The Astrophysical Journa

    Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA

    Full text link
    Galactic cosmic rays are commonly believed to be accelerated at supernova remnants via diffusive shock acceleration. Despite the popularity of this idea, a conclusive proof for its validity is still missing. Gamma-ray astronomy provides us with a powerful tool to tackle this problem, because gamma rays are produced during cosmic ray interactions with the ambient gas. The detection of gamma rays from several supernova remnants is encouraging, but still does not constitute a proof of the scenario, the main problem being the difficulty in disentangling the hadronic and leptonic contributions to the emission. Once released by their sources, cosmic rays diffuse in the interstellar medium, and finally escape from the Galaxy. The diffuse gamma-ray emission from the Galactic disk, as well as the gamma-ray emission detected from a few galaxies is largely due to the interactions of cosmic rays in the interstellar medium. On much larger scales, cosmic rays are also expected to permeate the intracluster medium, since they can be confined and accumulated within clusters of galaxies for cosmological times. Thus, the detection of gamma rays from clusters of galaxies, or even upper limits on their emission, will allow us to constrain the cosmic ray output of the sources they contain, such as normal galaxies, AGNs, and cosmological shocks. In this paper, we describe the impact that the Cherenkov Telescope Array, a future ground-based facility for very-high energy gamma-ray astronomy, is expected to have in this field of research.Comment: accepted to Astroparticle Physics, special issue on Physics with the Cherenkov Telescope Arra

    Cosmic-Ray Events as Background in Imaging Atmospheric Cherenkov Telescopes

    Full text link
    The dominant background for observations of gamma-rays in the energy region above 50 GeV with Imaging Atmospheric Cherenkov telescopes are cosmic-ray events. The images of most of the cosmic ray showers look significantly different from those of gamma-rays and are therefore easily discriminated. However, a small fraction of events seems to be indistinguishable from gamma-rays. This constitutes an irreducible background to the observation of high-energy gamma-ray sources, and limits the sensitivity achievable with a given instrument. Here, a Monte Carlo study of gamma-like cosmic-ray events is presented. The nature of gamma-like cosmic-ray events, the shower particles that are responsible for the gamma-like appearance, and the dependence of these results on the choice of the hadronic interaction model are investigated. Most of the gamma-like cosmic ray events are characterised by the production of high-energy pi0's early in the shower development which dump most of the shower energy into electromagnetic sub-showers. Also Cherenkov light from single muons can mimic gamma-rays in close-by pairs of telescopes. Differences of up to 25% in the collection area for gamma-like proton showers between QGSJet/FLUKA and Sibyll/FLUKA simulations have been found.Comment: Accepted by Journal of Astroparticle Physic
    corecore