14,109 research outputs found
g-function in perturbation theory
We present some explicit computations checking a particular form of gradient
formula for a boundary beta function in two-dimensional quantum field theory on
a disc. The form of the potential function and metric that we consider were
introduced in hep-th/9210065, hep-th/9311177 in the context of background
independent open string field theory. We check the gradient formula to the
third order in perturbation theory around a fixed point. Special consideration
is given to situations when resonant terms are present exhibiting logarithmic
divergences and universal nonlinearities in beta functions. The gradient
formula is found to work to the given order.Comment: 1+14 pages, Latex; v.2: typos corrected; v.3: minor corrections, to
appear in IJM
Simple Elliptic Singularities: a note on their G-function
The link between Frobenius manifolds and singularity theory is well known,
with the simplest examples coming from the simple hypersurface singularities.
Associated with any such manifold is a function known as the -function. This
plays a role in the construction of higher-genus terms in various theories. For
the simple singularities the G-function is known explicitly: G=0. The next
class of singularities, the unimodal hypersurface or elliptic hypersurface
singularities consists of three examples,
\widetilde{E}_6,\widetilde{E}_7,\widetilde{E}_8 (or equivalently P_8,
X_9,J_10). Using a result of Noumi and Yamada on the flat structure on the
space of versal deformations of these singularities the -function is
explicitly constructed for these three examples. The main property is that the
function depends on only one variable, the marginal (dimensionless) deformation
variable. Other examples are given based on the foldings of known Frobenius
manifolds. Properties of the -function under the action of the modular group
is studied, and applications within the theory of integrable systems are
discussed.Comment: 15 page
Concise analytic solutions to the quantum Rabi model with two arbitrary qubits
Using extended coherent states, an analytical exact study has been carried
out for the quantum Rabi model (QRM) with two arbitrary qubits in a very
concise way. The -functions with determinants are generally
derived. For the same coupling constants, the simplest -function, resembling
that in the one-qubit QRM, can be obtained. Zeros of the -function yield the
whole regular spectrum. The exceptional eigenvalues, which do not belong to the
zeros of the function, are obtained in the closed form. The Dark states in
the case of the same coupling can be detected clearly in a continued-fraction
technique. The present concise solution is conceptually clear and practically
feasible to the general two-qubit QRM and therefore has many applications.Comment: 13 pages, 3 figure
Normalization of Off-shell Boundary State, g-function and Zeta Function Regularization
We consider the model in two dimensions with boundary quadratic deformation
(BQD), which has been discussed in tachyon condensation. The partition function
of this model (BQD) on a cylinder is determined, using the method of zeta
function regularization. We show that, for closed channel partition function, a
subtraction procedure must be introduced in order to reproduce the correct
results at conformal points. The boundary entropy (g-function) is determined
from the partition function and the off-shell boundary state. We propose and
consider a supersymmetric generalization of BQD model, which includes a
boundary fermion mass term, and check the validity of the subtraction
procedure.Comment: 21 pages, LaTeX, comments and 3 new references adde
- …
