67,670 research outputs found
Service Aware Fuzzy Logic Based Handover Decision in Heterogeneous Wireless Networks
The ubiquitous services of wireless communication networks are growing
rapidly by the development of wireless communication technologies. While a user
is roaming from one cell to another cell, an intelligent decision mechanism and
network selection is extremely crucial to maintain the quality of service (QoS)
during handover. Handover decision must be made precisely to avoid any
unnecessary phenomenon like ping-pong, corner effect, call blocking, and call
dropping etc. This work considered service types like voice, video, and data
and their QoS requirements for handover decision using fuzzy logic in
heterogeneous network environment. Service is an important factor for the users
and particular service requires respective QoS. This paper provides all the
cases of handover decisions between macrocell and femtocell networks
considering service type. The proposed system models regarding these handover
decisions using fuzzy logic considering several input parameters e.g. received
signal strength indicator (RSSI), data rate, user's velocity, and interference
level (signal-to-noise plus interference ratio) to make handover from femtocell
to macrocell, macrocell to femtocell or femtocell to femtocell. The performance
of different parameters are shown based on service type are analyzed.Comment: International Conference on Electrical, Computer and Communication
Engineering (ECCE), Feb. 2017, Cox's Bazar, Banglades
Structural dynamic reliability evaluation under consideration of fuzzy strength and fuzzy stress
A new dynamic reliability analysis under repeated or multiple series fuzzy loads and fuzzy strength is proposed in this paper. The proposed prediction models of structural dynamic fuzzy reliability with and without strength degeneration are established by using fuzzy theory and stress-strength interference theory. The fuzzy reliability is converted to probability reliability. The results have shown that the proposed model is feasible and practicable
Paired accelerated arames: The perfect interferometer with everywhere smooth wave amplitudes
Rindler's acceleration-induced partitioning of spacetime leads to a
nature-given interferometer. It accomodates quantum mechanical and wave
mechanical processes in spacetime which in (Euclidean) optics correspond to
wave processes in a ``Mach-Zehnder'' interferometer: amplitude splitting,
reflection, and interference. These processes are described in terms of
amplitudes which behave smoothly across the event horizons of all four Rindler
sectors. In this context there arises quite naturally a complete set of
orthonormal wave packet histories, one of whose key properties is their
"explosivity index". In the limit of low index values the wave packets trace
out fuzzy world lines. By contrast, in the asymptotic limit of high index
values, there are no world lines, not even fuzzy ones. Instead, the wave packet
histories are those of entities with non-trivial internal collapse and
explosion dynamics. Their details are described by the wave processes in the
above-mentioned Mach-Zehnder interferometer. Each one of them is a double slit
interference process. These wave processes are applied to elucidate the
amplification of waves in an accelerated inhomogeneous dielectric. Also
discussed are the properties and relationships among the transition amplitudes
of an accelerated finite-time detector.Comment: 38 pages, RevTex, 10 figures, 4 mathematical tutorials. Html version
of the figures and of related papers available at
http://www.math.ohio-state.edu/~gerlac
Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer
In this research, green bell pepper was dried in a pilot plant fluidized bed dryer equipped with a heat pump humidifier using three temperatures of 40, 50 and 60C and two airflow velocities of 2 and 3m/s in constant air moisture. Three modeling methods including nonlinear regression technique, Fuzzy Logic and Artificial Neural Networks were applied to investigate drying kinetics for the sample. Among the mathematical models, Midilli model with R=0.9998 and root mean square error (RMSE)=0.00451 showed the best fit with experimental data. Feed-Forward-Back-Propagation network with Levenberg-Marquardt training algorithm, hyperbolic tangent sigmoid transfer function, training cycle of 1,000 epoch and 2-5-1 topology, deserving R=0.99828 and mean square error (MSE)=5.5E-05, was determined as the best neural model. Overall, Neural Networks method was much more precise than two other methods in prediction of drying kinetics and control of drying parameters for green bell pepper. Practical Applications: This article deals with different modeling approaches and their effectiveness and accuracy for predicting changes in the moisture ratio of green bell pepper enduring fluidized bed drying, which is one of the most concerning issues in food factories involved in drying fruits and vegetables. This research indicates that although efficiency of mathematical modeling, Fuzzy Logic controls and Artificial Neural Networks (ANNs) were all acceptable, the modern prediction methods of Fuzzy Logic and especially ANNs were more productive and precise. Besides, this report compares our findings with previous ones carried out with the view of predicting moisture quotients of other food crops during miscellaneous drying procedures. © 2016 Wiley Periodicals, Inc
Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link
Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p
The Guppy Effect as Interference
People use conjunctions and disjunctions of concepts in ways that violate the
rules of classical logic, such as the law of compositionality. Specifically,
they overextend conjunctions of concepts, a phenomenon referred to as the Guppy
Effect. We build on previous efforts to develop a quantum model that explains
the Guppy Effect in terms of interference. Using a well-studied data set with
16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional
complex Hilbert space H that models the data and demonstrates the relationship
between overextension and interference. We view the interference effect as, not
a logical fallacy on the conjunction, but a signal that out of the two
constituent concepts, a new concept has emerged.Comment: 10 page
Fuzzy Chance-constrained Programming Based Security Information Optimization for Low Probability of Identification Enhancement in Radar Network Systems
In this paper, the problem of low probability of identification (LPID) improvement for radar network systems is investigated. Firstly, the security information is derived to evaluate the LPID performance for radar network. Then, without any prior knowledge of hostile intercept receiver, a novel fuzzy chance-constrained programming (FCCP) based security information optimization scheme is presented to achieve enhanced LPID performance in radar network systems, which focuses on minimizing the achievable mutual information (MI) at interceptor, while the attainable MI outage probability at radar network is enforced to be greater than a specified confidence level. Regarding to the complexity and uncertainty of electromagnetic environment in the modern battlefield, the trapezoidal fuzzy number is used to describe the threshold of achievable MI at radar network based on the credibility theory. Finally, the FCCP model is transformed to a crisp equivalent form with the property of trapezoidal fuzzy number. Numerical simulation results demonstrating the performance of the proposed strategy are provided
- …
