634,922 research outputs found
Concentration-adjustable micromixer using droplet injection into a microchannel
A novel micromixing technique that exploit a thrust of droplets into the
mixing interface is developed. The technique enhances the mixing by injecting
immiscible droplets in a mixing channel and the methodology enables a control
of the mixing level simply by changing the droplet injection frequency. We
experimentally characterize the mixing performance with various droplet
injection frequencies, channel geometries, and diffusion coefficients.
Consequently, it is revealed that the mixing level increases with the injection
frequency, the droplet-diameter-to-channel-width ratio, and the diffusion
coefficient. Moreover, the mixing level is found to be a linear function of the
droplet volume fraction in the mixing section. The results suggest that the
developed technique can produce a large amount of sample solution whose
concentration is arbitrary and precisely controllable with a simple and stable
operation.Comment: 12 + 3 pages, 6 + 4 figure
Vibrational ratchets
Transport in a one-dimensional symmetric device can be activated by the
combination of thermal noise and a bi-harmonic drive. For the study case of an
overdamped Brownian particle diffusing on a periodic one-dimensional substrate,
we distinguish two apparently different bi-harmonic regimes: (i) Harmonic
mixing, where the two drive frequencies are commensurate and of the order of
some intrinsic dynamical relaxation rate. A comparison of new simulation
results with earlier theoretical predictions shows that the analytical
understanding of this frequency mixing mechanism is not satisfactory, yet; (ii)
Vibrational mixing, where one harmonic drive component is characterized by a
high frequency but finite amplitude-to-frequency ratio. Its effect on the
device response to either a static or a low-frequency additional input signal
is accurately reproduced by rescaling each spatial Fourier component of the
substrate potential, separately. Contrary to common wisdom based on the linear
response theory, we show that extremely high-frequency modulations can indeed
influence the response of slowly (or dc) operated devices, with potential
applications in sensor technology and cellular physiology. Finally, the mixing
of two high-frequency beating signal is also investigated both numerically and
analytically.Comment: 8 pages, 9 figure
SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter
A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments
Counterpropagating frequency mixing with terahertz waves in diamond
Frequency conversion by means of Kerr-nonlinearity is one of the most common
and exploited nonlinear optical processes in the UV, visible, IR and Mid-IR
spectral regions. Here we show that wave mixing of an optical field and a
Terahertz wave can be achieved in diamond, resulting in the frequency
conversion of the THz radiation either by sum- or difference-frequency
generation. In the latter case, we show that this process is phase-matched and
most efficient in a counter-propagating geometry
Sidereal frequency generator Patent
System generating sidereal frequency signals from signals of standard solar frequency without use of mixing operations or feedback loop
Frequency effect on streaming phenomenon induced by Rayleigh surface acoustic wave in microdroplets
Acoustic streaming of ink particles inside a water microdroplet generated by a surface acoustic wave(SAW) has been studied numerically using a finite volume numerical method and these results have been verified using experimental measurements. Effects of SAW excitation frequency, droplet volume, and radio-frequency (RF) power are investigated, and it has been shown that SAW excitation frequency influences the SAWattenuation length, lSAW , and hence the acoustic energy absorbed by liquid. It has also been observed that an increase of excitation frequency generally enhances the SAW streaming behavior. However, when the frequency exceeds a critical value that depends on the RF power applied to the SAW device, weaker acoustic streaming is observed resulting in less effective acoustic mixing inside the droplet. This critical value is characterised by a dimensionless ratio of droplet radius to SAWattenuation length, i.e., Rd/lSAW . With a mean value of Rd/lSAW ≈ 1, a fast and efficient mixing can be induced, even at the lowest RF power of 0.05 mW studied in this paper. On the other hand, for the Rd/lSAW ratios much larger than ∼1, significant decreases in streaming velocities were observed, resulting in a transition from regular (strong) to irregular (weak) mixing/flow. This is attributed to an increased absorption rate of acoustic wave energy that leaks into the liquid, resulting in a reduction of the acoustic energy radiated away from the SAW interaction region towards the droplet free surface. It has been demonstrated in this study that a fast and efficient mixing process with a smaller RF power could be achieved if the ratio of Rd/lSAW ≤ 1 in the SAW-droplet based microfluidics
- …
