2 research outputs found

    A heterogeneous mobile cloud computing model for hybrid clouds

    Get PDF
    Mobile cloud computing is a paradigm that delivers applications to mobile devices by using cloud computing. In this way, mobile cloud computing allows for a rich user experience; since client applications run remotely in the cloud infrastructure, applications use fewer resources in the user's mobile devices. In this paper, we present a new mobile cloud computing model, in which platforms of volunteer devices provide part of the resources of the cloud, inspired by both volunteer computing and mobile edge computing paradigms. These platforms may be hierarchical, based on the capabilities of the volunteer devices and the requirements of the services provided by the clouds. We also describe the orchestration between the volunteer platform and the public, private or hybrid clouds. As we show, this new model can be an inexpensive solution to different application scenarios, highlighting its benefits in cost savings, elasticity, scalability, load balancing, and efficiency. Moreover, with the evaluation performed we also show that our proposed model is a feasible solution for cloud services that have a large number of mobile users. (C) 2018 Elsevier B.V. All rights reserved.This work has been partially supported by the Spanish MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD under the project grant TIN2016-79637-P TOWARDS UNIFICATION OF HPC AND BIG DATA PARADIGMS

    A new volunteer computing model for data-intensive applications

    Get PDF
    Volunteer computing is a type of distributed computing in which ordinary people donate computing resources to scientific projects. BOINC is the main middleware system for this type of distributed computing. The aim of volunteer computing is that organizations be able to attain large computing power thanks to the participation of volunteer clients instead of a high investment in infrastructure. There are projects, like the ATLAS@Home project, in which the number of running jobs has reached a plateau, due to a high load on data servers caused by file transfer. This is why we have designed an alternative, using the same BOINC infrastructure, in order to improve the performance of BOINC projects that have reached their limit due to the I/O bottleneck in data servers. This alternative involves having a percentage of the volunteer clients running as data servers, called data volunteers, that improve the performance of the system by reducing the load on data servers. In addition, our solution takes advantage of data locality, leveraging the low network latencies of closer machines. This paper describes our alternative in detail and shows the performance of the solution, applied to 3 different BOINC projects, using a simulator of our own, ComBoS.Spanish MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD, Grant/Award Number: TIN2016-79637-
    corecore