217,806 research outputs found

    Sperm chromatin dispersion test before sperm preparation is predictive of clinical pregnancy in cases of unexplained infertility treated with intrauterine insemination and induction with clomiphene citrate

    Get PDF
    Background/aims: A large proportion of men with normal sperm results as analyzed using conventional techniques have fragmented DNA in their spermatozoa. We performed a prospective study to examine the incidence of DNA fragmentation in sperm in cases of couples with previously unexplained infertility and treated with intrauterine insemination. We evaluated whether there was any predictive value of DNA fragmentation for pregnancy outcome in such couples. Methods: The percentage of DNA fragmentation and all classical variables to evaluate sperm before and after sperm treatment were determined. We studied the probable association between these results and pregnancy outcome in terms of clinical and ongoing pregnancy rate per started first cycle. We also assessed the optimal threshold level to diagnose DNA fragmentation in our center. Results: When using threshold levels of 20, 25, and 30%, the occurrence of DNA fragmentation was 42.9, 33.3, and 28.6%, respectively. Receiver operating characteristic (ROC) analysis of all cases revealed an area under the curve of 80% to predict the clinical pregnancy rate per cycle from testing the sperm motility (a + b) before treatment. We failed to generate an ROC curve to estimate pregnancy outcome from the amount of DNA fragmentation before treatment. However, when selecting only those men with a pretreatment DNA fragmentation of at least 20%, the pretreatment result was statistically different between couples who achieved a clinical pregnancy and those who did not. Conclusion: DNA fragmentation is often diagnosed in couples with unexplained infertility. Each center should evaluate the type of test it uses to detect DNA fragmentation in sperm and determine its own threshold values

    Stochastic equation of fragmentation and branching processes related to avalanches

    Get PDF
    We give a stochastic model for the fragmentation phase of a snow avalanche. We construct a fragmentation-branching process related to the avalanches, on the set of all fragmentation sizes introduced by J. Bertoin. A fractal property of this process is emphasized. We also establish a specific stochastic equation of fragmentation. It turns out that specific branching Markov processes on finite configurations of particles with sizes bigger than a strictly positive threshold are convenient for describing the continuous time evolution of the number of the resulting fragments. The results are obtained by combining analytic and probabilistic potential theoretical tools.Comment: 17 page

    Scattering properties of the 2e2e+2e^-2e^+ polyelectronic system

    Full text link
    We study the 2e2e+2e^-2e^+ equal-mass charge-neutral four-body system in the adiabatic hyperspherical framework. The lowest few adiabatic potentials are calculated for zero orbital angular momentum, positive parity, and charge conjugation symmetries. Propagating the R-matrix, the low-energy ss-wave scattering lengths of the singlet-singlet and triplet-triplet spin configurations are calculated. Lastly, we calculate the S-matrix for energies above the ionic threshold to estimate the transition rates between the single ionic fragmentation channel and the lowest few dimer-dimer fragmentation channels.Comment: 8 pages, 5 figure

    Initial state dependence in multi-electron threshold ionization of atoms

    Full text link
    It is shown that the geometry of multi-electron threshold ionization in atoms depends on the initial configuration of bound electrons. The reason for this behavior is found in the stability properties of the classical fixed point of the equations of motion for multiple threshold fragmentation. Specifically for three-electron break-up, apart from the symmetric triangular configuration also a break-up of lower symmetry in the form of a T-shape can occur, as we demonstrate by calculating triple photoionization for the lithium ground and first excited states. We predict the electron break-up geometry for threshold fragmentation experiments

    Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions

    Full text link
    We use a Monte Carlo approach to study hadron azimuthal angular correlations in high energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energies at mid-rapidity. We build a hadron event generator that incorporates the production of 222\to 2 and 232\to 3 parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the Quark-Gluon Plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold pTthresh=2.4p_T^{{\tiny{thresh}}}=2.4 GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, since their interaction with the medium may lead to showers of low momentum hadrons along the direction of motion of the original partons as the medium becomes diluted

    Heavy flavours: theory summary

    Full text link
    I summarize the theory talks given in the Heavy Flavours Working Group. In particular, I discuss heavy-flavour parton distribution functions, threshold resummation for heavy-quark production, progress in fragmentation functions, quarkonium production, heavy-meson hadroproduction.Comment: 6 pages. Talk given at DIS 2005, XIII Workshop on Deep Inelastic Scattering, April 27-May 1, 2005, Madison, WI, U.S.

    Threshold resummation for the prompt-photon cross section revisited

    Get PDF
    We study the resummation of large logarithmic perturbative corrections to the partonic cross sections relevant for the process pp->gamma X at high transverse momentum of the photon.These corrections arise near the threshold for the partonic reaction and are associated with soft-gluon emission. We especially focus on the resummation effects for the contribution to the cross section where the photon is produced in jet fragmentation. Previous calculations in perturbation theory at fixed-order have established that this contribution is a subdominant part of the cross section. We find, however, that it is subject to much larger resummation effects than the direct (non-fragmentation) piece and therefore appears to be a significant contribution in the fixed-target regime, not much suppressed with respect to the direct part. Inclusion of threshold resummation for the fragmentation piece leads to some improvement in comparisons between theoretical calculations and experimental data.Comment: 12 pages, 5 figure

    The Physics of Protoplanetesimal Dust Agglomerates. III. Compaction in Multiple Collisions

    Full text link
    To study the evolution of protoplanetary dust aggregates, we performed experiments with up to 2600 collisions between single, highly-porous dust aggregates and a solid plate. The dust aggregates consisted of spherical SiO2_2 grains with 1.5μ\mum diameter and had an initial volume filling factor (the volume fraction of material) of ϕ0=0.15\phi_0=0.15. The aggregates were put onto a vibrating baseplate and, thus, performed multiple collisions with the plate at a mean velocity of 0.2 m s1^{-1}. The dust aggregates were observed by a high-speed camera to measure their size which apparently decreased over time as a measure for their compaction. After 1000 collisions the volume filling factor was increased by a factor of two, while after 2000\sim2000 collisions it converged to an equilibrium of ϕ0.36\phi\approx0.36. In few experiments the aggregate fragmented, although the collision velocity was well below the canonical fragmentation threshold of 1\sim1 m s1^{-1}. The compaction of the aggregate has an influence on the surface-to-mass ratio and thereby the dynamic behavior and relative velocities of dust aggregates in the protoplanetary nebula. Moreover, macroscopic material parameters, namely the tensile strength, shear strength, and compressive strength, are altered by the compaction of the aggregates, which has an influence on their further collisional behavior. The occurrence of fragmentation requires a reassessment of the fragmentation threshold velocity.Comment: accepted by the Astrophysical Journa
    corecore