211,299 research outputs found

    Fragmentation pathways of nanofractal structures on surface

    Full text link
    We present a detailed systematical theoretical analysis of the post-growth processes occurring in nanofractals grown on surface. For this study we developed a method which accounts for the internal dynamics of particles in a fractal. We demonstrate that particle diffusion and detachment controls the shape of the emerging stable islands on surface. We consider different scenarios of fractal post-growth relaxation and analyze the time evolution of the island's morphology. The results of our calculations are compared with available experimental observations, and experiments in which the post-growth relaxation of deposited nanostructures can be probed are suggested.Comment: 34 pages, 11 figure

    Saturated free fatty acids and apoptosis in microvascular mesangial cells: palmitate activates pro-apoptotic signaling involving caspase 9 and mitochondrial release of endonuclease G

    Get PDF
    BACKGROUND: In type 2 diabetes, free fatty acids (FFA) accumulate in microvascular cells, but the phenotypic consequences of FFA accumulation in the microvasculature are incompletely understood. Here we investigated whether saturated FFA induce apoptosis in human microvascular mesangial cells and analyzed the signaling pathways involved. METHODS: Saturated and unsaturated FFA-albumin complexes were added to cultured human mesangial cells, after which the number of apoptotic cells were quantified and the signal transduction pathways involved were delineated. RESULTS: The saturated FFA palmitate and stearate were apoptotic unlike equivalent concentrations of the unsaturated FFA oleate and linoleate. Palmitate-induced apoptosis was potentiated by etomoxir, an inhibitor of mitochondrial β-oxidation, but was prevented by an activator of AMP-kinase, which increases fatty acid β-oxidation. Palmitate stimulated an intrinsic pathway of pro-apoptotic signaling as evidenced by increased mitochondrial release of cytochrome-c and activation of caspase 9. A caspase 9-selective inhibitor blocked caspase 3 activation but incompletely blocked apoptosis in response to palmitate, suggesting an additional caspase 9-independent pathway. Palmitate stimulated mitochondrial release of endonuclease G by a caspase 9-independent mechanism, thereby implicating endonuclease G in caspase 9-indpendent regulation of apoptosis by saturated FFA. We also observed that the unsaturated FFA oleate and linoleate prevented palmitate-induced mitochondrial release of both cytochrome-c and endonuclease G, which resulted in complete protection from palmitate-induced apoptosis. CONCLUSIONS: Taken together, these results demonstrate that palmitate stimulates apoptosis by evoking an intrinsic pathway of proapoptotic signaling and identify mitochondrial release of endonuclease G as a key step in proapoptotic signaling by saturated FFA and in the anti-apoptotic actions of unsaturated FFA

    Photoinduced dynamics in protonated aromatic amino acid

    Full text link
    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms

    Constitutively Active Galpha q and Galpha 13 Trigger Apoptosis through Different Pathways

    Get PDF
    We investigated the effect of expression of constitutively active Galpha mutants on cell survival. Transfection of constitutively active Galphaq and Galpha13 in two different cell lines caused condensation of genomic DNA and nuclear fragmentation. Endonuclease cleavage of genomic DNA was followed by labeling the DNA fragments and subsequent flow cytometric analysis. The observed cellular phenotype was identical to the phenotype displayed by cells undergoing apoptosis. To distinguish between the apoptosis-inducing ability of the two Galpha-subunits, the signaling pathways involved in this cellular function were investigated. Whereas Galpha q induced apoptosis via a protein kinaseC-dependent pathway, Galpha13 caused programmed cell death through a pathway involving the activation of the small G-protein Rho. Both of the pathways leading to apoptosis were blocked by overexpression of bcl-2. In contrast to other apoptosis-inducing systems, expression of constitutively active Galphaq and Galpha13 triggered apoptosis in high serum as well as in defined medium
    corecore