21,674 research outputs found

    Topological regulation of activation barriers on fractal substrates

    Full text link
    We study phase-ordering dynamics of a ferromagnetic system with a scalar order-parameter on fractal graphs. We propose a scaling approach, inspired by renormalization group ideas, where a crossover between distinct dynamical behaviors is induced by the presence of a length λ\lambda associated to the topological properties of the graph. The transition between the early and the asymptotic stage is observed when the typical size L(t)L(t) of the growing ordered domains reaches the crossover length λ\lambda . We consider two classes of inhomogeneous substrates, with different activated processes, where the effects of the free energy barriers can be analytically controlled during the evolution. On finitely ramified graphs the free energy barriers encountered by domains walls grow logarithmically with L(t)L(t) while they increase as a power-law on all the other structures. This produces different asymptotic growth laws (power-laws vs logarithmic) and different dependence of the crossover length λ\lambda on the model parameters. Our theoretical picture agrees very well with extensive numerical simulations.Comment: 13 pages, 4 figure

    Fractal Rigidity in Migraine

    Get PDF
    We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.Comment: 4 pages, 6 figure

    Epigenetic regulation of osteogenesis: human embryonic palatal mesenchymal cells.

    Get PDF
    Mesenchymal stem cells (MSCs) provide an appropriate model to study epigenetic changes during osteogenesis and bone regeneration due to their differentiation potential. Since there are no unique markers for MSCs, methods of identification are limited. The complex morphology of human embryonic palatal mesenchyme stem cell (HEPM) requires analysis of fractal dimensions to provide an objective quantification of self-similarity, a statistical transformation of cellular shape and border complexity. We propose the hypothesis of a study to compare and contrast sequential steps of osteogenic differentiation in HEPMs both phenotypically using immunocytochemistry, and morphometrically using fractal analysis from undifferentiated passage 1 (P1) to passage 7 (P7) cells. The proof-of-concept is provided by results we present here that identify and compare the modulation of expression of certain epigenetic biomarkers (alkaline phosphatase, ALP; stromal interaction molecule-1, STRO-1; runt-related transcription factor-2, RUNX2), which are established markers of osteogenesis in bone marrow studies, of osteoblastic/skeletal morphogenesis, and of osteoblast maturation. We show that Osteoinductive medium (OIM) modulates the rate of differentiation of HEPM into Run-2+ cells, the most differentiated subpopulation, followed by ALP+ and STRO-1+ cells. Taken together, our phenotypical and morphometric data demonstrate the feasibility of using HEPM to assess osteogenic differentiation from an early undifferentiated to a differentiated stage. This research model may lay the foundation for future studies aimed at characterizing the epigenetic characteristics of osteoimmunological disorders and dysfunctions (e.g., osteoarthritis, temporomandibular joint disorders), so that proteomic profiling can aid the diagnosis and monitor the prognosis of these and other osteoimmunopathologies
    corecore