127,851 research outputs found
Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects.
We demonstrate the use of a compressive sampling algorithm for on-chip fluorescent imaging of sparse objects over an ultra-large field-of-view (>8 cm(2)) without the need for any lenses or mechanical scanning. In this lensfree imaging technique, fluorescent samples placed on a chip are excited through a prism interface, where the pump light is filtered out by total internal reflection after exciting the entire sample volume. The emitted fluorescent light from the specimen is collected through an on-chip fiber-optic faceplate and is delivered to a wide field-of-view opto-electronic sensor array for lensless recording of fluorescent spots corresponding to the samples. A compressive sampling based optimization algorithm is then used to rapidly reconstruct the sparse distribution of fluorescent sources to achieve approximately 10 microm spatial resolution over the entire active region of the sensor-array, i.e., over an imaging field-of-view of >8 cm(2). Such a wide-field lensless fluorescent imaging platform could especially be significant for high-throughput imaging cytometry, rare cell analysis, as well as for micro-array research
Sensor Technology using Fluorescent Dyes
This project is concerned with the application of fluorescent dye technology for leak detection in pulp and paper recovery boiler systems in order to avoid a smelt / water explosion. The dyes’ property to absorb light of short wavelength and emit light of a longer wavelength (fluoresce) is what makes them a quintessential candidate for the desired sensor technology. The projected benefits of this technology pertain to cost-effectiveness and safety of recovery boiler operations.
For all purposes, the inert dye pyrenetetrasulfonic acid (PTSA) was used as a tracer agent. Multiple methods of experimental design were attempted to determine the reaction kinetics of the aforementioned dye. These methods involved exposing the dye to a specific temperature and monitoring its decomposition rate manually using a fluorometer. The dye was exposed to elevated temperature and pressure conditions in microwave reactors, such as Biotage and CEM Microwave. A design of experiments protocol was developed and executed, and the data collected was analyzed.
It was established that PTSA decomposed on a 1st order reaction rate, and corresponding mathematical models were established using mass and energy balances. MATLAB simulations were developed and compared with actual experimental data conducted in a continuous stirred tanks reactor (CSTR) to simulate the real-time conditions of a leak environment. The data collected was also used to demonstrate the accuracy of the mathematical model. The leak detection system is based on steady-state conditions using the PTSA mass balance model as a reference point for any changes that might occur in the system.
The decomposition rate of PTSA was monitored through careful recordings of a fluorometer. The decay rate analysis shows a decrease in the dye concentration in water with respect to time. The MATLAB simulation curve demonstrates the logarithmic relationship per the CSTR method at 150 °C and 200 °C.
Further research and experimentation is required to understand the dynamics of these fluorescent dyes and their rate kinetics at elevated conditions to match the 10 MPa and 480 °C recovery boiler conditions. This innovative method of applying such world-class detection technology will ultimately mitigate risk by saving lives of employees in the industrial facility and facilitate the process of maximizing profit and minimizing costs associated with a shut-down in the case of a leak.https://scholarscompass.vcu.edu/capstone/1155/thumbnail.jp
Multispectral Image Processing for Plants
The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status
Chemically driven switches for online detection of pH changes in microfluidic devices
The internal walls of microfabricated fluidic channels were functionalized with a selfassembled monolayer of Rhodamine B lactam. This molecule has the capability to interconvert between its open fluorescent amide form and the closed non-fluorescent lactam form upon changes of the pH conditions. The interconversion (switch) between the two reversible forms is achieved by addition of an acid or a base and is consistent with a reaction mechanism of the first order. This paper describes the online observation of such fluorescent switch covalently anchored to the channel and proposes this method as a possible sensor for the monitoring of pH changes in microreactors
Fluorescent optical fibre chemosensor for the detection of mercury
This work aims to develop a stable, compact and portable fibre optic sensing system which is capable of real time detection of the mercury ion (II), Hg2+. A novel fluorescent polymeric material for Hg2+ detection, based on a coumarin derivative (acting as the fluorophore) and an azathia crown ether moiety (acting as the mercury ion receptor), has been designed and synthesized. The material was covalently attached to the distal end of an optical fibre and exhibited a significant increase in fluorescence intensity in response to Hg2+ in the μM concentration range via a photoinduced electron transfer (PET) mechanism. The sensor has also demonstrated a high selectivity for Hg2+ over other metal ions. A washing protocol was identified for sensor regeneration, allowing the probe to be re-used. The approach developed in this work can also be used for the preparation of sensors for other heavy metals
Applications of Graphene Quantum Dots in Biomedical Sensors
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz
Medical diagnostics using designed molecules with sense and logic
Luminescent molecules responsive to cations, anions and even small molecules can be designed with the appropriate selectivity and sensitivity for monitoring physiological and pathological levels of analytes. We highlight some recent examples of designed molecules that can sense for a specific analyte or a combination of analytes in blood and in living cells. Furthermore, we demonstrate how molecules can be designed with built-in algorithms according to principles of Boolean logic to perform information processing. The potential future application of molecular systems able to perform multi-analyte sensing as `lab-on-a-molecule' systems for medical and environmental diagnostics is also presented.peer-reviewe
MicroRNA sensors
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.We have developed a technology for the profiling of miRNA expression in intact cells. The approach is based on sensor oligonucleotides, which upon entering the cell, bind specific miRNA targets, are cleaved as a result of this binding, and produce a fluorescent signal that is proportional to the abundance of the miRNA target. Specifically, the sensor oligonucleotides are completely complementary to a target miRNA species, are non-stabilized around the seed region (the region cleaved by the miRNA-RISC), and are labeled with a fluorescent dye and a quencher at their 5’- and 3’- end respectively. Upon entering the cell, these oligonucleotides engage the target miRNA by complementary base pairing. This leads to recruitment of the RNA induced silencing complex (RISC) to the duplex. The complex cleaves the sensor oligonucleotide and the miRNA is free to “catalyze” subsequent clevage reactions. The cleavage of the sensor oligo leads to separation between the dye and the quencher, and a resultant fluorescent enhancement that can be measured.
We have demonstrated the feasibility of this method for the sensing of the pro-metastatic miRNA-10b in cell-free extracts and intact cells using human and murine breast adenocarcinoma cell lines.
The miRNA epigenome represents a fundamental molecular regulator of metastasis. Consequently, developing tools to understand metastatic changes at the miRNA level can lead to the mapping out of a comprehensive and systematic atlas of cancer progression. The described technology is potentially transformative because it addresses this important issue. Furthermore, the technology has broad implications and can be utilized in any model system or clinical scenario to answer questions related to microRNA function. Specifically, the technology can help distinguish, assess, and/or monitor cancer stages and progression; aid the elucidation of basic mechanisms underlying cancer initiation and progression; facilitate early cancer detection and/or cancer risk assessment; and facilitate/accelerate the process of drug discovery
Fluorescent nanoparticles for sensing
Nanoparticle-based fluorescent sensors have emerged as a competitive
alternative to small molecule sensors, due to their excellent
fluorescence-based sensing capabilities. The tailorability of design,
architecture, and photophysical properties has attracted the attention of many
research groups, resulting in numerous reports related to novel nanosensors
applied in sensing a vast variety of biological analytes. Although
semiconducting quantum dots have been the best-known representative of
fluorescent nanoparticles for a long time, the increasing popularity of new
classes of organic nanoparticle-based sensors, such as carbon dots and
polymeric nanoparticles, is due to their biocompatibility, ease of synthesis,
and biofunctionalization capabilities. For instance, fluorescent gold and
silver nanoclusters have emerged as a less cytotoxic replacement for
semiconducting quantum dot sensors. This chapter provides an overview of recent
developments in nanoparticle-based sensors for chemical and biological sensing
and includes a discussion on unique properties of nanoparticles of different
composition, along with their basic mechanism of fluorescence, route of
synthesis, and their advantages and limitations
- …
