260,128 research outputs found
Three-dimensional Optical-resolution Photoacoustic Microscopy
Optical microscopy, providing valuable insights at the cellular and organelle levels, has been widely recognized as an enabling biomedical technology. As the mainstays of in vivo three-dimensional (3-D) optical microscopy, single-/multi-photon fluorescence microscopy and optical coherence tomography (OCT) have demonstrated their extraordinary sensitivities to fluorescence and optical scattering contrasts, respectively. However, the optical absorption contrast of biological tissues, which encodes essential physiological/pathological information, has not yet been assessable.
The emergence of biomedical photoacoustics has led to a new branch of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM), where the optical irradiation is focused to the diffraction limit to achieve cellular1 or even subcellular level lateral resolution. As a valuable complement to existing optical microscopy technologies, OR-PAM brings in at least two novelties. First and most importantly, OR-PAM detects optical absorption contrasts with extraordinary sensitivity (i.e., 100%). Combining OR-PAM with fluorescence microscopy or with optical-scattering-based OCT (or with both) provides comprehensive optical properties of biological tissues. Second, OR-PAM encodes optical absorption into acoustic waves, in contrast to the pure optical processes in fluorescence microscopy and OCT, and provides background-free detection. The acoustic detection in OR-PAM mitigates the impacts of optical scattering on signal degradation and naturally eliminates possible interferences (i.e., crosstalks) between excitation and detection, which is a common problem in fluorescence microscopy due to the overlap between the excitation and fluorescence spectra.
Unique for optical absorption imaging, OR-PAM has demonstrated broad biomedical applications since its invention, including, but not limited to, neurology, ophthalmology, vascular biology, and dermatology. In this video, we teach the system configuration and alignment of OR-PAM as well as the experimental procedures for in vivo functional microvascular imaging
Green fluorescent diamidines as diagnostic probes for trypanosomes
LED fluorescence microscopy offers potential benefits to the diagnosis of human African trypanosomiasis, as well as to other aspects of diseases management, such as detection of drug resistant strains. To advance such approaches reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we report a series of novel green fluorescent diamidines and their suitability as probes to stain trypanosomes
Single Molecule DNA Detection with an Atomic Vapor Notch Filter
The detection of single molecules has facilitated many advances in life- and
material-sciences. Commonly, it founds on the fluorescence detection of single
molecules, which are for example attached to the structures under study. For
fluorescence microscopy and sensing the crucial parameters are the collection
and detection efficiency, such that photons can be discriminated with low
background from a labeled sample. Here we show a scheme for filtering the
excitation light in the optical detection of single stranded labeled DNA
molecules. We use the narrow-band filtering properties of a hot atomic vapor to
filter the excitation light from the emitted fluorescence of a single emitter.
The choice of atomic sodium allows for the use of fluorescent dyes, which are
common in life-science. This scheme enables efficient photon detection, and a
statistical analysis proves an enhancement of the optical signal of more than
15% in a confocal and in a wide-field configuration.Comment: 9 pages, 5 figure
Single-molecule fluorescence microscopy review : shedding new light on old problems
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques.</jats:p
Two-photon-excited fluorescence (TPEF) and fluorescence lifetime imaging (FLIM) with sub-nanosecond pulses and a high analog bandwidth signal detection
Two-photon excited fluorescence (TPEF) microscopy and fluorescence lifetime
imaging (FLIM) are powerful imaging techniques in bio-molecular science. The
need for elaborate light sources for TPEF and speed limitations for FLIM,
however, hinder an even wider application. We present a way to overcome this
limitations by combining a robust and inexpensive fiber laser for nonlinear
excitation with a fast analog digitization method for rapid FLIM imaging. The
applied sub nanosecond pulsed laser source is synchronized to a high analog
bandwidth signal detection for single shot TPEF- and single shot FLIM imaging.
The actively modulated pulses at 1064nm from the fiber laser are adjustable
from 50ps to 5ns with kW of peak power. At a typically applied pulse lengths
and repetition rates, the duty cycle is comparable to typically used
femtosecond pulses and thus the peak power is also comparable at same cw-power.
Hence, both types of excitation should yield the same number of fluorescence
photons per time on average when used for TPEF imaging. However, in the 100ps
configuration, a thousand times more fluorescence photons are generated per
pulse. In this paper, we now show that the higher number of fluorescence
photons per pulse combined with a high analog bandwidth detection makes it
possible to not only use a single pulse per pixel for TPEF imaging but also to
resolve the exponential time decay for FLIM. To evaluate the performance of our
system, we acquired FLIM images of a Convallaria sample with pixel rates of 1
MHz where the lifetime information is directly measured with a fast real time
digitizer. With the presented results, we show that longer pulses in the
many-10ps to nanosecond regime can be readily applied for TPEF imaging and
enable new imaging modalities like single pulse FLIM
Detection of cryptosporidium oocysts in water and environmental concentrates
Whilst current methods for the isolation and enumeration of Cryptosporidium spp. oocysts in water have provided some insight into their occurrence and significance, they are regarded as being inefficient, variable and time-consuming, with much of the interpretation being left to the expertise of the analyst. Two expectations of novel developments are to reduce the variability and subjectivity associated with the isolation and identification of oocysts. Flocculation, immunomagnetisable and flow cytometric techniques, for concentrating oocysts from water samples, should prove more reliable than current methods, whilst the development of more avid and specific monoclonal antibodies in conjunction with the use of nuclear fluorochromes will aid identification. Further insight into the viability, taxonomy, species identification, infectivity and virulence of the parasite should be forthcoming through the use of techniques such as the polymerase chain reaction, in situ hybridisation and non-uniform alternating current electrical fields. Such information is necessary in order to enable microbiologists, epidemiologists, engineers, utility operators and regulators to assess the safety of a water supply, with respect to Cryptosporidium contamination, more effectively
- …
