296,377 research outputs found
Evolution of a fluorinated green fluorescent protein
The fluorescence of bacterial cells expressing a variant (GFPm) of the green fluorescent protein (GFP) was reduced to background levels by global replacement of the leucine residues of GFPm by 5,5,5-trifluoroleucine. Eleven rounds of random mutagenesis and screening via fluorescence-activated cell sorting yielded a GFP mutant containing 20 amino acid substitutions. The mutant protein in fluorinated form showed improved folding efficiency both in vivo and in vitro, and the median fluorescence of cells expressing the fluorinated protein was improved {approx}650-fold in comparison to that of cells expressing fluorinated GFPm. The success of this approach demonstrates the feasibility of engineering functional proteins containing many copies of abiological amino acid constituents
Investigation of laser induced phosphorescence and fluorescence of acetone at low pressure for molecular tagging velocimetry in gas microflows
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Laser-induced fluorescence and phosphorescence properties of gaseous acetone in argon are
measured and analyzed in a pressure ranging from 10(5) to 10(2) Pa, with the aim of analyzing by molecular
tagging velocimetry gas microflows in rarefied regimes which requires operation at low pressure. Acetone is
excited at a wavelength of 266 nm and immediately emits short lifetime fluorescence rapidly followed by
long lifetime phosphorescence. At atmospheric pressure, the early phosphorescence intensity is more than
600 times lower than the fluorescence one. The phosphorescence signal is rapidly decreasing with time,
closely following a power law. Both fluorescence and phosphorescence signals are decreasing with pressure.
The systematic analysis of fluorescence and phosphorescence of acetone molecules shows that although the
signal is dramatically reduced at low pressure, the on-chip integration technique and the optimization of the
acquisition parameters provide an exploitable signal for molecular tagging velocimetry in rarefied
microflows, in a Knudsen number range corresponding to the early slip flow regime
Wavefront shaping of a Bessel light field enhances light sheet microscopy with scattered light
The project was supported by the UK Engineering and Physical Sciences Research Council, RS MacDonald Charitable Trust, SULSA, and the St. Andrews 600th anniversary BRAINS appeal. K. D. is a Royal Society Wolfson Merit Award holder.Light sheet microscopy has seen a resurgence as it facilitates rapid, high contrast, volumetric imaging with minimal sample exposure. Initially developed for imaging scattered light, this application of light sheet microscopy has largely been overlooked but provides an endogenous contrast mechanism which can complement fluorescence imaging and requires very little or no modification to an existing light sheet fluorescence microscope. Fluorescence imaging and scattered light imaging differ in terms of image formation. In the former the detected light is incoherent and weak whereas in the latter the coherence properties of the illumination source, typically a laser, dictate the coherence of detected light, but both are dependent on the quality of the illuminating light sheet. Image formation in both schemes can be understood as the convolution of the light sheet with the specimen distribution. In this paper we explore wavefront shaping for the enhancement of light sheet microscopy with scattered light. We show experimental verification of this result, demonstrating the use of the propagation invariant Bessel beam to extend the field of view of a high resolution scattered light, light sheet microscope and its application to imaging of biological super-cellular structures with sub-cellular resolution. Additionally, complementary scattering and fluorescence imaging is used to characterize the enhancement, and to develop a deeper understanding of the differences of image formation between contrast mechanisms in light sheet microscopy.Publisher PD
Photonic mode density effects on single-molecule fluorescence blinking
We investigated the influence of the photonic mode density (PMD) on the
triplet dynamics of individual chromophores on a dielectric interface by
comparing their response in the presence and absence of a nearby gold film.
Lifetimes of the excited singlet state were evaluated in ordet to measure
directly the PMD at the molecules position. Triplet state lifetimes were
simultaneously determined by statistical analysis of the detection time of the
fluorescence photons. The observed singlet decay rates are in agreement with
the predicted PMD for molecules with different orientations. The triplet decay
rate is modified in a fashion correlated to the singlet decay rate. These
results show that PMD engineering can lead to an important suppression of the
fluorescence, introducing a novel aspect of the physical mechanism to enhance
fluorescence intensity in PMD-enhancing systems such as plasmonic devices
Reactive oxygen species induced by water containing nano-bubbles and its role in the improvement of barley seed germination
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.The study of reactive oxygen species (ROS) generation caused by nano-bubbles (NBs) is of great importance for its application in both physiological activity promotion aspect and sterilization aspect. In this paper, Aminophenyl Fluorescein (APF) was used as a fluorescent reagent for the detection of ROS generation by NBs. The NBs scattering could cause the decrease of fluorescence intensity. Meanwhile, the quenching effect of oxygen could also cause the decrease of fluorescence intensity. Although the above two factors masked the fluorescence intensity generation by ROS, the fluorescence intensity of the water containing NBs still increased with NBs generation time, which proved that oxygen NBs could generate ROS. Moreover, the endogenous ROS in the barley seed cells were measured in the seed that germinated in the water containing NBs and the distilled water respectively. According to the results of seed staining experiments, both the microscope images and the absorbance at 560nm proved that the seeds dipped in the water containing NBs could generate more ROS compared to those in the distilled water. These findings greatly increase the NBs potential use both in agricultural field and environmental field
Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein.
Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP(D190Δ) containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP(A227Δ) revealed that a `flipping mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function
A novel in-line fibre-optic sensor for the detection of hydrate inhibitors within the oil and gas industry
Surface Fluorescence Studies of Tissue Mitochondrial Redox State in Isolated Perfused Rat Lungs
We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21 and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect on RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue health in real-time
- …
