1,416,741 research outputs found
The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency
The interaction between swimming and flying animals and their fluid environments generates downstream wake structures such as vortices. In most studies, the upstream flow in front of the animal is neglected. In this study, we demonstrate the existence of upstream fluid structures even though the upstream flow is quiescent or possesses a uniform incoming velocity. Using a computational model, the flow generated by a swimmer (an oscillating flexible plate) is simulated and a new fluid mechanical analysis is applied to the flow to identify the upstream fluid structures. These upstream structures show the exact portion of fluid that is going to interact with the swimmer. A mass flow rate is then defined based on the upstream structures, and a metric for propulsive efficiency is established using the mass flow rate and the kinematics of the swimmer. We propose that the unsteady mass flow rate defined by the upstream fluid structures can be used as a metric to measure and objectively compare the efficiency of locomotion in water and air
Fluid Vesicles in Flow
We review the dynamical behavior of giant fluid vesicles in various types of
external hydrodynamic flow. The interplay between stresses arising from
membrane elasticity, hydrodynamic flows, and the ever present thermal
fluctuations leads to a rich phenomenology. In linear flows with both
rotational and elongational components, the properties of the tank-treading and
tumbling motions are now well described by theoretical and numerical models. At
the transition between these two regimes, strong shape deformations and
amplification of thermal fluctuations generate a new regime called trembling.
In this regime, the vesicle orientation oscillates quasi-periodically around
the flow direction while asymmetric deformations occur. For strong enough
flows, small-wavelength deformations like wrinkles are observed, similar to
what happens in a suddenly reversed elongational flow. In steady elongational
flow, vesicles with large excess areas deform into dumbbells at large flow
rates and pearling occurs for even stronger flows. In capillary flows with
parabolic flow profile, single vesicles migrate towards the center of the
channel, where they adopt symmetric shapes, for two reasons. First, walls exert
a hydrodynamic lift force which pushes them away. Second, shear stresses are
minimal at the tip of the flow. However, symmetry is broken for vesicles with
large excess areas, which flow off-center and deform asymmetrically. In
suspensions, hydrodynamic interactions between vesicles add up to these two
effects, making it challenging to deduce rheological properties from the
dynamics of individual vesicles. Further investigations of vesicles and similar
objects and their suspensions in steady or time-dependent flow will shed light
on phenomena such as blood flow.Comment: 13 pages, 13 figures. Adv. Colloid Interface Sci., 201
Compact fluid-flow restrictor
Fluid-flow restrictor has degree of restriction easily and accurately controlled during manufacture. Restrictor's flow channel is machined square thread around a solid slug which is shrink-fitted to cylindrical case. One end of case is closed, open end capped, and both ends tapped for tube fittings for fluid flow
Fluid flow control with transformation media
We introduce a new concept for the manipulation of fluid flow around
three-dimensional bodies. Inspired by transformation optics, the concept is
based on a mathematical idea of coordinate transformations and physically
implemented with anisotropic porous media permeable to the flow of fluids. In
two situations - for an impermeable object placed either in a free-flowing
fluid or in a fluid-filled porous medium - we show that the object can be
coated with an inhomogeneous, anisotropic permeable medium, such as to preserve
the flow that would have existed in the absence of the object. The proposed
fluid flow cloak eliminates downstream wake and compensates viscous drag,
hinting us at the possibility of novel propulsion techniques.Comment: 4 pages, 7 figure
Experimental observation of shear thickening oscillation
We report experimental observation of the shear thickening oscillation, i.e.
the spontaneous macroscopic oscillation in the shear flow of severe shear
thickening fluid. The shear thickening oscillation is caused by the interplay
between the fluid dynamics and the shear thickening, and has been predicted
theoretically by the present authors using a phenomenological fluid dynamics
model for the dilatant fluid, but never been reported experimentally. Using a
density-matched starch-water mixture, in the cylindrical shear flow of a few
centimeters flow width, we observed strong vibrations of the frequency around
20 Hz, which is consistent with our theoretical prediction.Comment: 4pages, 5 figure
Inertia effects in rheometrical flow systems Part 2: The balance rheometer
The flow field of a linear viscoelastic fluid in the balance rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian fluid is included in this solution as a special case. The forces and couples on the hemispheres are readily deduced from this solution
Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures.
The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass-Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures
- …
